Swinging up and stabilization of a real inverted pendulum

The basic aim of the present work was to swing up a real pendulum from the pending position and to balance stably the pendulum at the upright position and further move the pendulum cart to a specified position on the pendulum rail in the shortest time. Different control strategies are compared and tested in simulations and in real-time experiments, where maximum acceleration of the pendulum pivot and length of the pendulum rail are limited. A comparison of fuzzy swinging algorithm with energy-based swinging strategies shows advantages of using fuzzy control theory in nonlinear real-time applications. An adaptive state controller was developed for a stabile, and in the same time optimal balancing of an inverted pendulum and a switching mechanism between swinging and balancing algorithm is proposed.