Rational molecular design of polymeric materials toward efficient triboelectric energy harvesting

[1]  Cheng Xu,et al.  Quantifying the triboelectric series , 2019, Nature Communications.

[2]  Zhong Lin Wang,et al.  Integrated charge excitation triboelectric nanogenerator , 2019, Nature Communications.

[3]  M. Fardis,et al.  NMR and EPR Structural Analysis and Stability Study of Inverse Vulcanized Sulfur Copolymers , 2018, ACS omega.

[4]  Ning Wang,et al.  Inductor‐Free Wireless Energy Delivery via Maxwell's Displacement Current from an Electrodeless Triboelectric Nanogenerator , 2018, Advanced materials.

[5]  Shurong Dong,et al.  Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators. , 2018, ACS applied materials & interfaces.

[6]  Jae H Park,et al.  Fluorination effect of activated carbons on performance of asymmetric capacitive deionization , 2017 .

[7]  Zhong‐Lin Wang,et al.  Triboelectric Nanogenerators Driven Self‐Powered Electrochemical Processes for Energy and Environmental Science , 2016 .

[8]  Liqun Zhang,et al.  One-Piece Triboelectric Nanosensor for Self-Triggered Alarm System and Latent Fingerprint Detection. , 2016, ACS nano.

[9]  I. Parkin,et al.  Porous carbons from inverse vulcanised polymers , 2016 .

[10]  Yue Zhang,et al.  A structural bionic design: From electric organs to systematic triboelectric generators , 2016 .

[11]  Caofeng Pan,et al.  Significant Enhancement of Triboelectric Charge Density by Fluorinated Surface Modification in Nanoscale for Converting Mechanical Energy , 2015 .

[12]  Ning Wang,et al.  Self-Powered Triboelectric Nanosensor with Poly(tetrafluoroethylene) Nanoparticle Arrays for Dopamine Detection. , 2015, ACS nano.

[13]  Simiao Niu,et al.  Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. , 2014, Nano letters.

[14]  G. Amarendra,et al.  Free volume study on the origin of dielectric constant in a fluorine-containing polyimide blend: poly(vinylidene fluoride-co-hexafluoro propylene)/poly(ether imide). , 2014, The journal of physical chemistry. B.

[15]  Myeong-Lok Seol,et al.  Nature-replicated nano-in-micro structures for triboelectric energy harvesting. , 2014, Small.

[16]  Long Lin,et al.  Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies , 2013 .

[17]  Ching-Ping Wong,et al.  A hybrid energy cell for self-powered water splitting† , 2013 .

[18]  K. Char,et al.  The use of elemental sulfur as an alternative feedstock for polymeric materials. , 2013, Nature chemistry.

[19]  G. Baryshnikov,et al.  The FTIR spectra of substituted tetraoxa[8]circulenes and their assignments based on DFT calculations , 2013 .

[20]  Zhong Lin Wang,et al.  Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. , 2013, Nano letters.

[21]  S. Perrier,et al.  Describing the Structure of a Randomly Hyperbranched Polymer , 2010 .

[22]  J. Coates Interpretation of Infrared Spectra, A Practical Approach , 2006 .

[23]  Gregory S. Tschumper,et al.  Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. , 2002, Chemical reviews.

[24]  P. Tessier,et al.  An XPS study of the SF6 reactive ion beam etching of silicon at low temperatures , 1999 .

[25]  D. Briggs,et al.  High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database , 1992 .

[26]  J. Yates,et al.  X-ray photoemission study of physically absorbed SF6☆ , 1977 .

[27]  P. Pulay,et al.  Vibrational assignment of SF4 , 1974 .

[28]  W. Klement Study of the λ transition in liquid sulfur with a differential scanning calorimeter , 1974 .

[29]  C. Nordling,et al.  Molecular Spectroscopy by Means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure , 1970 .

[30]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[31]  G. Gee,et al.  The polymerization of sulfur , 1955 .

[32]  Chang Bao Han,et al.  Self‐Powered Water Splitting Using Flowing Kinetic Energy , 2015, Advanced materials.

[33]  Willi Volksen,et al.  Low dielectric constant materials. , 2010, Chemical reviews.

[34]  R. McDowell,et al.  Vibrational levels and anharmonicity in SF6—I. Vibrational band analysis , 1986 .

[35]  R. L. Redington,et al.  Infrared Spectra of Matrix‐Isolated ClF3, BrF3, and BrF5; Fluorine Exchange Mechanism of Liquid ClF3, BrF3, and SF4 , 1971 .

[36]  H. Roberts,et al.  The Raman and infra-red spectra of sulphur tetrafluoride , 1956 .

[37]  J. Gaunt The infra-red spectra and molecular structure of some group 6 hexafluorides , 1953 .

[38]  G. Gee The molecular complexity of sulphur in the liquid and vapour , 1952 .