Differential Evolution Algorithm for MESFET Small Signal Model Parameter Extraction

This paper presents an application of Differential Evolution (DE) technique to extract small signal model parameters of GaAs metal extended semiconductor field effect transistor (MESFET). DE algorithm is used to minimize the difference between measured and modeled $S$- parameters to extract the small signal model parameters of the MESFET. The performance of DE algorithm in terms of quality of solution and extraction time are compared with Particle Swarm Optimization (PSO) algorithm. The measured data are obtained from a fabricated MESFET of gate length 0.7$\mu$ m and gate width of 600 $\mu$ m (4 x 150). The $S$ parameters are measured in the frequency range of 500 MHz to 25 GHz. The simulation results illustrate that DE technique extracts all $16$ small signal model parameters of MESFET accurately and efficiently. The efficiency of this approach is demonstrated by a good fit between the measured and modeled S-parameter over a frequency range of $0.5$ to $25$ GHz.

[1]  Leandro dos Santos Coelho,et al.  MESFET DC model parameter extraction using Quantum Particle Swarm Optimization , 2009, Microelectron. Reliab..

[2]  Fujiang Lin,et al.  FET model parameter extraction based on optimization with multiplane data-fitting and bidirectional search-a new concept , 1994 .

[3]  Siba K. Udgata,et al.  Integrated Learning Particle Swarm Optimizer for global optimization , 2011, Appl. Soft Comput..

[4]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[5]  Roberto Menozzi,et al.  Small-signal modeling for microwave FET linear circuits based on a genetic algorithm , 1996 .

[6]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[7]  Siba K. Udgata,et al.  Artificial bee colony algorithm for small signal model parameter extraction of MESFET , 2010, Eng. Appl. Artif. Intell..

[8]  Siba K. Udgata,et al.  Small signal parameter extraction of MESFET using quantum particle swarm optimization , 2010, Microelectron. Reliab..

[9]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[10]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[11]  Ajith Abraham,et al.  On stability and convergence of the population-dynamics in differential evolution , 2009, AI Commun..

[12]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[13]  Samrat L. Sabat,et al.  The hyperspherical acceleration effect particle swarm optimizer , 2009, Appl. Soft Comput..

[14]  Dominique Schreurs,et al.  A robust integrated multibias parameter-extraction method for MESFET and HEMT models , 2000 .

[15]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[16]  Yifan Gao Genetic algorithm-based parameter-extraction for power GaAs MESFET , 2001, 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517).

[17]  Meiying Ye,et al.  Parameter determination of Schottky-barrier diode model using differential evolution , 2009 .

[18]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .