Applications of Luminescent Transition Platinum Group Metal Complexes to Sensor Technology and Molecular Probes

Abstract Luminescent transition metal complexes are currently revolutionizing many areas of photochemistry and photophysics. In particular, they are proving useful as molecular probes and sensors. We discuss the design consideration in producing useful sensors and probes. As we show, complexes are amenable to rational design. Applications of inorganic complexes to a variety of sensor technologies are discussed. In addition, problem areas such as sensor–support interactions are covered.

[1]  D. Whitten,et al.  Luminescent bimetallic complexes. Study of the formation, redox behavior, and photochemistry of complexes between Ag+ and bis(2,2′-bipyridine)-bis-cyanoruthenium(II) , 1982 .

[2]  S. Snyder,et al.  Interactions of ruthenium(II) photosensitizers with surfactant media , 1989 .

[3]  Y. Harima,et al.  Direct current electrogenerated chemiluminescent microdetermination of peroxydisulfate in aqueous solution , 1991 .

[4]  J. Chaires,et al.  Neither delta- nor lambda-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. , 1992, Biochemistry.

[5]  J. Demas,et al.  LUMINESCENCE QUENCHING OF DICYANOBIS(2,2′-BIPYRIDINE)RUTHENIUM(II) AND DICYANOBIS(1,10-PHENANTHROLINE)RUTHENIUM(II) BY TRANSITION METAL COMPLEXES , 1977 .

[6]  Kowk-Yin Wong,et al.  Luminescent platinum complex in solid films for optical sensing of oxygen , 1992 .

[7]  J. Kennedy,et al.  Macromolecular complexes — Dynamic interactions and electronic processes: Edited by Eishun Tsuchida, VCH Publishers Inc., Weinhem, 1991. 400 pp.; price £78.00; ISBN 0-89573-784-1 , 1992 .

[8]  J. Lakowicz,et al.  Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular-weight analytes. , 1998, Analytical chemistry.

[9]  P. Dervan Design of sequence-specific DNA-binding molecules. , 1986, Science.

[10]  Ingo Klimant,et al.  Strategies To Design pH Optodes with Luminescence Decay Times in the Microsecond Time Regime , 1998 .

[11]  J. Demas,et al.  Exciplexes of ruthenium(II). cap alpha. -diimine complexes with silver(I) , 1988 .

[12]  P. C. Ford,et al.  Ligand substituent effects in transition metal photochemistry—The tuning of excited states , 1979 .

[13]  T. Meyer,et al.  Application of the energy gap law to nonradiative, excited-state decay , 1983 .

[14]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[15]  T. Mallouk,et al.  Photoassisted hydrogen generation: Pt and CdS supported on separate particles , 1987 .

[16]  J. Demas,et al.  Singlet energy transfer from the charge transfer excited state of tris (2,2′‐bipyridine) ruthenium (II) , 1980 .

[17]  Benjamin A. DeGraff,et al.  Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes , 1991 .

[18]  J. K. Thomas,et al.  Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems , 1977 .

[19]  J. N. Demas,et al.  Design of luminescence-based temperature sensors , 1993, Other Conferences.

[20]  J. Demas,et al.  Oxygen Sensors Based on Luminescence Quenching: Interactions of Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) Chloride and Pyrene with Polymer Supports , 1997 .

[21]  D. Morse,et al.  Nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes , 1974 .

[22]  Christian Huber,et al.  Energy transfer-based lifetime sensing of chloride using a luminescent transition metal complex , 1998 .

[23]  B. P. Sullivan,et al.  Synthetic control of excited states. Nonchromophoric ligand variations in polypyridyl complexes of osmium (II) , 1985 .

[24]  A. Tossi,et al.  A STUDY OF SOME POLYPYRIDYLRUTHENIUM(II) COMPLEXES AS DNA BINDERS AND PHOTOCLEAVAGE REAGENTS , 1989, Photochemistry and photobiology.

[25]  J. Demas,et al.  Oxygen sensors based on luminescence quenching of metal complexes:  osmium complexes suitable for laser diode excitation. , 1996, Analytical chemistry.

[26]  J. Lakowicz,et al.  DNA dynamics observed with long lifetime metal‐ligand complexes , 1995 .

[27]  A. Bard,et al.  Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemiluminescence studies of ruthenium chelates , 1973 .

[28]  J. F. Stoddart,et al.  Photoinduced Electron Transfer in Supramolecular Assemblies Composed of Dialkoxybenzene-Tethered Ruthenium(II) Trisbipyridine and Bipyridinium Salts , 1994 .

[29]  James N. Demas,et al.  Luminescent sensors: modeling of microheterogeneous systems and model differentiation , 1992, Other Conferences.

[30]  M. Wrighton,et al.  The nature of the lowest excited state in fac-tricarbonylhalobis(4-phenylpyridine)rhenium(I) and fac-tricarbonylhalobis(4,4'-bipyridine)rhenium(I): emissive organometallic complexes in fluid solution , 1979 .

[31]  D. James,et al.  Distributions of fluorescence lifetimes: consequences for the photophysics of molecules adsorbed on surfaces , 1985 .

[32]  R. Grigg,et al.  Luminescent pH sensors based on p-tert-butylcalix[4]arene-linked ruthenium(II) trisbipyridyl complexes , 1994 .

[33]  A. Lees Luminescence properties of organometallic complexes , 1987 .

[34]  J. Demas,et al.  Long-lived, highly luminescent rhenium(I) complexes as molecular probes: intra- and intermolecular excited-state interactions , 1993 .

[35]  A. Tossi,et al.  Binding of Ru(bpy)3(2+) and Ru(phen)3(2+) to polynucleotides and DNA: effect to added salts on the absorption and luminescence properties. , 1988, Journal of photochemistry and photobiology. B, Biology.

[36]  J. Barton,et al.  Ru(phen)(2)dppz(2+) Luminescence: Dependence on DNA Sequences and Groove-Binding Agents. , 1998, Inorganic chemistry.

[37]  James N. Demas,et al.  pH sensors based on luminescent ruthenium(II) alpha-diimine complexes with diethylaminomethyl sensing groups , 1999, Other Conferences.

[38]  J. Barton,et al.  Chiral probe for A-form helixes of DNA and RNA: tris(tetramethylphenanthroline)ruthenium(II) , 1986 .

[39]  T. Tullius Metals and Molecular Biology , 1989 .

[40]  Andrew Mills,et al.  Plastic colorimetric film sensors for gaseous ammonia , 1995 .

[41]  D. McConnell,et al.  A study of the interactions of some polypyridylruthenium (II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. , 1985, Nucleic acids research.

[42]  B. P. Sullivan,et al.  Synthetic routes to luminescent 2,2'-bipyridyl complexes of rhenium: preparation and spectral and redox properties of mono(bipyridyl) complexes of rhenium(III) and rhenium(I) , 1984 .

[43]  W. Horrocks,et al.  Lanthanide ion luminescence probes of the structure of biological macromolecules , 1981 .

[44]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[45]  J. Kropp,et al.  Luminescence and energy transfer in solutions of rare earth complexes. II. Studies of the solvation shell in europium(III) and terbium(III) as a function of acetate concentration , 1967 .

[46]  H. Wadley,et al.  Luminescence sensing of stress in Ti/Al2O3 fiber reinforced composites , 1995 .

[47]  W. Dressick,et al.  beta. -cyclodextrin inclusion complexes with. cap alpha. -diimineruthenium(II) photosensitizers , 1985 .

[48]  H. Zimmermann Physikochemische und cytochemische Untersuchungen zur Bindung von Ethidium- und Acridinfarbstoffen an DNA und an Organellen in lebenden Zellen , 1986 .

[49]  G. A. Crosby,et al.  Quantum efficiencies on transition metal complexes. II. Charge-transfer luminescence , 1971 .

[50]  R. Watts Ruthenium polypyridyls: A case study , 1983 .

[51]  Benjamin A. DeGraff,et al.  Peer Reviewed: Oxygen Sensors Based on Luminescence Quenching. , 1999 .

[52]  James N. Demas,et al.  Excited State Lifetime Measurements , 1983 .

[53]  L. McGown,et al.  Phase-Resolved Fluorescence in Chemical Analysis , 1987 .

[54]  J. N. Demas,et al.  Luminescence-based sensors: microheterogeneous and temperature effects☆ , 1993 .

[55]  J. Barton,et al.  Metals and DNA: molecular left-handed complements , 1986, Science.

[56]  James N. Demas,et al.  Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex , 1987 .

[57]  J. Demas,et al.  Excited state acid-base reactions of transition metal complexes: dicyanobis(2,2'-bipyridine) ruthenium(III) in aqueous acid , 1976 .

[58]  N. Turro,et al.  Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA , 1989 .

[59]  D. McMillin,et al.  Photoprocesses of Copper Complexes That Bind to DNA. , 1998, Chemical reviews.

[60]  Kristin K. Sharman,et al.  Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes. , 1999, Analytical chemistry.

[61]  J. Demas,et al.  Luminescence studies of pyridine .alpha.-diimine rhenium(I) tricarbonyl complexes , 1990 .

[62]  W. Kaim,et al.  Electronic structure of the "molecular light switch" bis(bipyridine)dipyrido[3,2-a:2',3'-c]phenazineruthenium(2+). Cyclic voltammetric, UV/visible and EPR/ENDOR study of multiply reduced complexes and ligands , 1993 .

[63]  Wenying Xu,et al.  Modeling of Luminescence Quenching-Based Sensors: Comparison of Multisite and Nonlinear Gas Solubility Models , 1995 .

[64]  M. Wrighton,et al.  Excited state proton transfer of ruthenium(II) complexes of 4,7-dihydroxy-1,10-phenanthroline. Increased acidity in the excited state , 1978 .

[65]  B. P. Sullivan,et al.  Luminescence Sensors for Cations Based on "Designed" Transition Metal Complexes , 1997 .

[66]  G. Rao,et al.  Sensing oxygen through skin using a red diode laser and fluorescence lifetimes. , 1995, Biosensors & bioelectronics.

[67]  Scott D. Cummings,et al.  Luminescent Platinum(II) Complexes of Quinoxaline-2,3-dithiolate , 1995 .

[68]  J. Demas,et al.  Intramolecular excited-state interactions of surfactant-active osmium(II) photosensitizers , 1989 .

[69]  C. Lukehart,et al.  Site-selective spectroscopy of luminescent square-planar platinum(II) complexes , 1991 .

[70]  Kuppuswamy Kalyanasundaram,et al.  Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues , 1982 .

[71]  Kuppuswamy Kalyanasundaram,et al.  Photochemistry in microheterogeneous systems , 1987 .

[72]  Andrew Mills,et al.  Equilibrium studies on colorimetric plastic film sensors for carbon dioxide , 1992 .

[73]  J. Lakowicz,et al.  Fluorescence polarization immunoassay of a high-molecular-weight antigen based on a long-lifetime Ru-ligand complex. , 1995, Analytical biochemistry.

[74]  Lawrence A. Bottomley,et al.  Scanning Force Microscopy of Small Ligand-Nucleic Acid Complexes: Tris(o-phenanthroline)ruthenium(II) as a Test for a New Assay , 1997 .

[75]  J. Lakowicz,et al.  Fluorescence energy transfer immunoassay based on a long-lifetime luminescent metal-ligand complex. , 1995, Analytical biochemistry.

[76]  G. Crosby,et al.  Evidence for multiple-state emission from ruthenium(II) complexes , 1973 .

[77]  J. Barton,et al.  Chiral probes for the handedness of DNA helices: enantiomers of tris(4,7-diphenylphenanthroline)ruthenium(II). , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[78]  J. Demas,et al.  Inter- and intramolecular excited-state interactions of surfactant-active rhenium(I) photosensitizers , 1988 .

[79]  A. Lees,et al.  Luminescence rigidochromism of fac-tricarbonylchloro(4,7-diphenyl-1,10-phenanthroline)rhenium as a spectroscopic probe in monitoring polymerization of photosensitive thin films , 1993 .

[80]  S. Schulman Molecular luminescence spectroscopy : methods and applications , 1985 .

[81]  B. P. Sullivan,et al.  Application of the energy gap law to the decay of charge transfer excited states, solvent effects , 1982 .

[82]  Ronald Grigg,et al.  Luminescent pH sensors based on di(2,2′-bipyridyl)(5,5′-diaminomethyl-2,2′-bipyridyl)-ruthenium(II) complexes , 1992 .

[83]  W. Ware,et al.  Temperature dependence of fluorescence lifetime distributions in 1,3-di(1-pyrenyl)propane with the maximum entropy method , 1989 .

[84]  T. Netzel,et al.  Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II) , 1980 .

[85]  R. Eisenberg,et al.  Acid-Base Behavior of the Ground and Excited States of Platinum(II) Complexes of Quinoxaline-2,3-dithiolate , 1995 .

[86]  Fritz Eckstein,et al.  Nucleic acids and molecular biology , 1987 .