Generating Polynomials and Symmetric Tensor Decompositions

This paper studies symmetric tensor decompositions. For symmetric tensors, there exist linear relations of recursive patterns among their entries. Such a relation can be represented by a polynomial, which is called a generating polynomial. The homogenization of a generating polynomial belongs to the apolar ideal of the tensor. A symmetric tensor decomposition can be determined by a set of generating polynomials, which can be represented by a matrix. We call it a generating matrix. Generally, a symmetric tensor decomposition can be determined by a generating matrix satisfying certain conditions. We characterize the sets of such generating matrices and investigate their properties (e.g., the existence, dimensions, nondefectiveness). Using these properties, we propose methods for computing symmetric tensor decompositions. Extensive examples are shown to demonstrate the efficiency of proposed methods.

[1]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[2]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[3]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[4]  I. Shafarevich,et al.  Basic algebraic geometry 1 (2nd, revised and expanded ed.) , 1994 .

[5]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..

[6]  Alessandra Bernardi,et al.  Computing symmetric rank for symmetric tensors , 2009, J. Symb. Comput..

[7]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[8]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[9]  Bernard Mourrain,et al.  Moment matrices, border bases and real radical computation , 2011, J. Symb. Comput..

[10]  W. Buczyska,et al.  Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes , 2013 .

[11]  J. William Helton,et al.  A Semidefinite Approach for Truncated K-Moment Problems , 2012, Foundations of Computational Mathematics.

[12]  Lek-Heng Lim Tensors and Hypermatrices , 2013 .

[13]  Pierre Comon,et al.  Tensor Decompositions, State of the Art and Applications , 2002 .

[14]  Pierre Comon,et al.  Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.

[15]  Robert M. Corless,et al.  A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots , 1997, ISSAC.

[16]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[17]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[18]  Monique Laurent,et al.  Revisiting two theorems of Curto and Fialkow on moment matrices , 2005 .

[19]  E. Ballico,et al.  Decomposition of homogeneous polynomials with low rank , 2010, 1003.5157.

[20]  R. Curto,et al.  Flat Extensions of Positive Moment Matrices: Recursively Generated Relations , 1998 .

[21]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..

[22]  Luke Oeding,et al.  Eigenvectors of tensors and algorithms for Waring decomposition , 2011, J. Symb. Comput..

[23]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[24]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[25]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[26]  Raul E. Curto,et al.  Truncated K-moment problems in several variables , 2005 .

[27]  W. C. Mcginnis Ideals , 1925, Free Speech.

[28]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[29]  Gonzalo Comas,et al.  On the Rank of a Binary Form , 2011, Found. Comput. Math..

[30]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[31]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[32]  B. Sturmfels SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[33]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[34]  I. Shafarevich Basic algebraic geometry , 1974 .

[35]  Ya-Xiang Yuan,et al.  Recent advances in numerical methods for nonlinear equations andnonlinear least squares , 2011 .

[36]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[37]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[38]  Raúl E. Curto,et al.  Solution of the Truncated Complex Moment Problem for Flat Data , 1996 .