Bioconversions of maize residues to value-added coproducts using yeast-like fungi.

Agricultural residues are abundant potential feedstocks for bioconversions to industrial fuels and chemicals. Every bushel of maize (approximately 25 kg) processed for sweeteners, oil, or ethanol generates nearly 7 kg of protein- and fiber-rich residues. Currently these materials are sold for very low returns as animal feed ingredients. Yeast-like fungi are promising biocatalysts for conversions of agricultural residues. Although corn fiber (pericarp) arabinoxylan is resistant to digestion by commercially available enzymes, a crude mixture of enzymes from the yeast-like fungus Aureobasidium partially saccharifies corn fiber without chemical pretreatment. Sugars derived from corn fiber can be converted to ethanol or other valuable products using a variety of naturally occurring or recombinant yeasts. Examples are presented of Pichia guilliermondii strains for the conversion of corn fiber hydrolysates to the alternative sweetener xylitol. Corn-based fuel ethanol production also generates enormous volumes of low-value stillage residues. These nutritionally rich materials are prospective substrates for numerous yeast fermentations. Strains of Aureobasidium and the red yeast Phaffia rhodozyma utilize stillage residues for production of the polysaccharide pullulan and the carotenoid astaxanthin, respectively.

[1]  W. A. Scheffers,et al.  Alcoholic Fermentation of d-Xylose by Yeasts , 1984, Applied and environmental microbiology.

[2]  B. Dien,et al.  Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass , 2000 .

[3]  Poonam Singh Nee Nigam,et al.  PROCESSES FOR FERMENTATIVE PRODUCTION OF XYLITOL - A SUGAR SUBSTITUTE , 1995 .

[4]  B. Prior,et al.  Production of xylan-hydrolyzing enzymes by Aureobasidium pullulans , 1991 .

[5]  M. Rizzi,et al.  Screening of yeasts for production of xylitol from D-xylose , 1995 .

[6]  I. Roberto,et al.  Xylitol production from rice straw hemicellulose hydrolysate using different yeast strains , 1997, Biotechnology Letters.

[7]  R. Maleszka,et al.  Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus , 1981, Biotechnology Letters.

[8]  B. Saha,et al.  Enzymology of Xylan Degradation , 1999 .

[9]  S. Gupta,et al.  Xylitol and riboflavin accumulation in xylose-grown cultures of Pichia guilliermondii , 1997, Applied Microbiology and Biotechnology.

[10]  B. Hahn-Hägerdal,et al.  Anaerobic Xylose Fermentation by Recombinant Saccharomyces cerevisiae Carrying XYL1, XYL2, andXKS1 in Mineral Medium Chemostat Cultures , 2000, Applied and Environmental Microbiology.

[11]  B. Saha,et al.  Screening for L-arabinose fermenting yeasts. , 1996, Applied biochemistry and biotechnology.

[12]  M. B. Medeiros,et al.  Screening of yeasts for production of xylitol fromd-xylose and some factors which affect xylitol yield inCandida guilliermondii , 1988, Journal of Industrial Microbiology.

[13]  B. Dien,et al.  Fermentations with New Recombinant Organisms , 1999, Biotechnology progress.

[14]  R. Moletta,et al.  Xylitol production from D-xylose byCandida guillermondii: Fermentation behaviour , 1991, Biotechnology Letters.

[15]  M. Ladisch,et al.  Assessment of ethanol production options for corn products , 1996 .

[16]  M. Cotta,et al.  The U.S. corn ethanol industry: An overview of current technology and future prospects , 2002 .

[17]  G. Hayman,et al.  Production of carotenoids byPhaffia rhodozyma grown on media composed of corn wet-milling co-products , 1995, Journal of Industrial Microbiology.

[18]  B. Saha,et al.  Production of xylitol by Candida peltata , 1999, Journal of Industrial Microbiology and Biotechnology.

[19]  Myoung-Dong Kim,et al.  Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae , 2002 .

[20]  Moniruzzaman,et al.  Metabolic engineering of bacteria for ethanol production , 1998, Biotechnology and bioengineering.

[21]  M. Galbe,et al.  Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae , 2002 .

[22]  T. Leathers,et al.  Pullulan production by color variant strains ofAureobasidium pullulans , 1988, Journal of Industrial Microbiology.

[23]  M. Penttilä,et al.  Cloning and Expression of a Fungal l-Arabinitol 4-Dehydrogenase Gene* , 2001, The Journal of Biological Chemistry.

[24]  B. Prior,et al.  A quantitative screening of some xylose-fermenting yeast isolates , 1985, Biotechnology Letters.

[25]  J. Thibault,et al.  Cell wall polysaccharide interactions in maize bran , 1995 .

[26]  N. Ho,et al.  Genetically Engineered SaccharomycesYeast Capable of Effective Cofermentation of Glucose and Xylose , 1998, Applied and Environmental Microbiology.

[27]  Ho,et al.  Expression of E. coli araBAD operon encoding enzymes for metabolizing L-arabinose in Saccharomyces cerevisiae. , 2001, Enzyme and microbial technology.

[28]  H. Jeppsson,et al.  An interlaboratory comparison of the performance of ethanol-producing micro-organisms in a xylose-rich acid hydroysate , 1994, Applied Microbiology and Biotechnology.

[29]  J. Nielsen,et al.  Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae , 2002, Applied Microbiology and Biotechnology.

[30]  W. V. van Zyl,et al.  Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 genes , 2001, Applied Microbiology and Biotechnology.

[31]  T. Leathers Color Variants of Aureobasidium pullulans Overproduce Xylanase with Extremely High Specific Activity , 1986, Applied and environmental microbiology.

[32]  N. Meinander,et al.  Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability. , 1997, Biotechnology and bioengineering.

[33]  P. M. Bruinenberg,et al.  NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts , 1984, Applied Microbiology and Biotechnology.

[34]  Mohammed Moniruzzaman,et al.  Hydrolysis by commercial enzyme mixtures of AFEX-treated corn fiber and isolated xylans , 1997 .

[35]  Eleonora Winkelhausen,et al.  Microbial conversion of d-xylose to xylitol , 1998 .

[36]  Toshiomi Yoshida,et al.  Isolation of xylose reductase gene ofPichia stipitis and its expression inSaccharomyces cerevisiae , 1991, Applied biochemistry and biotechnology.

[37]  T. Pepper,et al.  Xylitol in sugar-free confections , 1988 .

[38]  T. Leathers,et al.  Xylitol production from corn fibre hydrolysates by a two-stage fermentation process , 2000 .

[39]  M. Ladisch,et al.  Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations , 1985, Biotechnology Letters.

[40]  W. V. van Zyl,et al.  Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. , 2001, Advances in biochemical engineering/biotechnology.

[41]  M. Penttilä,et al.  Xylitol Production by Recombinant Saccharomyces Cerevisiae , 1991, Bio/Technology.

[42]  Min Zhang,et al.  Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis , 1995, Science.

[43]  T. Leathers,et al.  Isolation of astaxanthin-overproducing mutants of Phaffia rhodozyma , 1997, Biotechnology Letters.

[44]  Graeme M. Walker,et al.  Yeast Physiology and Biotechnology , 1998 .

[45]  B. Hahn-Hägerdal,et al.  Reduced Oxidative Pentose Phosphate Pathway Flux in Recombinant Xylose-Utilizing Saccharomyces cerevisiae Strains Improves the Ethanol Yield from Xylose , 2002, Applied and Environmental Microbiology.

[46]  M. Rizzi,et al.  Xylose fermentation by yeasts , 1984, Biotechnology Letters.

[47]  H. Onishi,et al.  The Production of Xylitol, L-Arabinitol and Ribitol by Yeasts , 1966 .

[48]  T. Leathers,et al.  Production of pullulan from fuel ethanol byproducts byAureobasidium sp. strain NRRl Y-12,974 , 1994, Biotechnology Letters.

[49]  M. Felipe,et al.  Xylitol formation by Candida guilliermondii in media containing different nitrogen sources , 1994 .

[50]  T. Leathers,et al.  Saccharification of corn fiber using enzymes fromAureobasidium sp. strain NRRL Y-2311-1 , 1996 .

[51]  B. Saha,et al.  Pretreatment and enzymatic saccharification of corn fiber , 1999, Applied biochemistry and biotechnology.

[52]  J. C. Preez,et al.  Fermentation of D-xylose to ethanol by a strain ofCandida shehatae , 1983, Biotechnology Letters.

[53]  T. Jeffries,et al.  Fermentation of hemicellulosic sugars and sugar mixtures by Candida shehatae. , 1988, Biotechnology and bioengineering.

[54]  N. Ho,et al.  Cloning and improving the expression ofPichia stipitis xylose reductase gene inSaccharomyces cerevisiae , 1993, Applied biochemistry and biotechnology.

[55]  G. T. Tsao,et al.  Conversion of pentoses by yeasts , 1983, Biotechnology and bioengineering.

[56]  B. Saha,et al.  Microbial Production of Xylitol , 1997 .