On theories attempting to explain observations of solitary waves and weak double layers in the auroral magnetosphere

The theories concerning solitary waves and weak double layers in the auroral plasma are discussed. We make comparisons with Viking satellite observations and computer simulation experiment results of similar phenomena. The lack of velocity vs. amplitude relation in the Viking data is not consistent with the predictions of ion acoustic soliton theories and neither are the measured speeds of the structures. Numerical simulations show results, which are somewhat more consistent with Viking measurements but not with the ion acoustic soliton theory predictions. The nonlinear phase space ion hole instability offers another explanation for simulation results and space observations. Even there we still are quite uncertain, since the theory so far is only one-dimensional whereas the observations indicate that the solitary structures have a two- or three-dimensional shape with such scale sizes that the ions cannot be considered as one-dimensional.

[1]  H. Koskinen,et al.  Solitary structures in the magnetospheric plasma observed by Viking , 1989 .

[2]  M. Hudson,et al.  Oxygen acoustic solitary waves in a magnetized plasma , 1989 .

[3]  M. Hudson,et al.  Dynamics of localized ion‐acoustic waves in a magnetized plasma , 1988 .

[4]  Lou‐Chuang Lee,et al.  Negative ion‐acoustic solitons in a two‐component magnetized plasma , 1988 .

[5]  D. Tetreault Growing ion holes as the cause of auroral double layers , 1988 .

[6]  T. H. Dupree,et al.  Growth of nonlinear intermittent fluctuations in linearly stable and unstable simulation plasma , 1986 .

[7]  William Lotko,et al.  Diffusive acceleration of auroral primaries , 1986 .

[8]  C. Barnes,et al.  Weak double layers in ion‐acoustic turbulence , 1985 .

[9]  T. H. Dupree,et al.  Simulation of phase space hole growth and the development of intermittent plasma turbulence , 1985 .

[10]  N. Hershkowitz,et al.  Laboratory evidence for ion-acoustic-type double layers , 1984 .

[11]  D. Tetreault Growth rate of the clump instability , 1983 .

[12]  T. H. Dupree,et al.  Observation of self-binding turbulent fluctuations in simulation plasma and their relevance to plasma kinetic theories , 1983 .

[13]  W. Lotko Reflection dissipation of an ion‐acoustic soliton , 1983 .

[14]  G. Chanteur,et al.  Formation of ion‐acoustic double layers , 1983 .

[15]  M. Hudson,et al.  Solitary waves and double layers on auroral field lines , 1983 .

[16]  C. Kennel,et al.  Spiky ion acoustic waves in collisionless auroral plasma , 1983 .

[17]  T. H. Dupree Growth of phase‐space density holes , 1983 .

[18]  H. Pécseli,et al.  Formation of Ion Phase-Space Vortexes , 1984 .

[19]  H. Pécseli,et al.  Nonlinear Evolution of the Ion-Ion Beam Instability , 1982 .

[20]  K. Černý,et al.  Observations of double layers and solitary waves in the auroral plasma , 1982 .

[21]  A. Hasegawa,et al.  Existence of a negative potential solitary‐wave structure and formation of a double layer , 1982 .

[22]  T. H. Dupree Theory of phase‐space density holes , 1982 .

[23]  H. Schamel,et al.  Theory of finite-amplitude electron and ion holes , 1981, Journal of Plasma Physics.

[24]  T. Sato,et al.  Numerical simulations on ion acoustic double layers , 1981 .

[25]  B. Buti Ion-acoustic holes in a two-electron-temperature plasma , 1980 .

[26]  Tetsuya Sato,et al.  Ion acoustic double layers , 1980 .

[27]  Charles F. Kennel,et al.  Topside current instabilities , 1971 .

[28]  Burton D. Fried,et al.  The Plasma Dispersion Function , 1961 .

[29]  M. Kruskal,et al.  Exact Nonlinear Plasma Oscillations , 1957 .