Optimization of Plasmonic-Organic Hybrid Electro-Optics

Plasmonic-organic hybrid technology affords the potential for exceptional bandwidth, extremely small footprint, and very low drive voltages resulting in substantially improved energy efficiency for devices. Optical loss is a well-recognized problem for plasmonic technologies but is currently addressed with some notable success. Thereby, the optimization of electrically poled organic electro-optic (OEO) materials is most critical since a large electro-optical coefficient allows implementation of short active device structures that result in lower insertion losses and lower voltage-length products. Most importantly, short structures also guarantee largest bandwidths and best energy efficiencies. Yet, an efficient optimization of in-device performance of OEO materials requires the development of novel computational simulation methods, especially as waveguide width dimensions reach tens of nanometers in plasmonic waveguides and as electrode surface/material interfacial effects become more and more dominant. The focus of this communication is on novel multi-scale modeling methods, including coarse-grained Monte Carlo statistical mechanical simulations combined with quantum mechanical methods to simulate and analyze the linear and nonlinear optical properties for high chromophore number density solid-state OEO materials. New chromophores are developed with the assistance of theory and may lead to an order of magnitude improvement in device performance.

[1]  J. Leuthold,et al.  100 GBd Plasmonic IQ Modulator , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[2]  Juerg Leuthold,et al.  Plasmonic-Organic Hybrid Modulators for Optical Interconnects beyond 100G/λ , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[3]  V. Shalaev,et al.  Bypassing Loss in Plasmonic Modulators , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[4]  Juerg Leuthold,et al.  Driver-Less Sub 1 Vpp Operation of a Plasmonic-Organic Hybrid Modulator at 100 GBd NRZ , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[5]  Juerg Leuthold,et al.  Plasmonics for Communications , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[6]  Juerg Leuthold,et al.  Multi-scale theory-assisted nano-engineering of plasmonic-organic hybrid electro-optic device performance , 2018, OPTO.

[7]  Juerg Leuthold,et al.  Three-Dimensional Phase Modulator at Telecom Wavelength Acting as a Terahertz Detector with an Electro-Optic Bandwidth of 1.25 Terahertz , 2018 .

[8]  V. Shalaev,et al.  1 Supplementary Information : Low loss Plasmon-assisted electro-optic modulator , 2018 .

[9]  J. Leuthold,et al.  High-speed plasmonic modulator in a single metal layer , 2017, Science.

[10]  D. Hillerkuss,et al.  Optical Interconnect Solution With Plasmonic Modulator and Ge Photodetector Array , 2017, IEEE Photonics Technology Letters.

[11]  Christine M Isborn,et al.  Absorption Spectra for Disordered Aggregates of Chromophores Using the Exciton Model. , 2017, Journal of chemical theory and computation.

[12]  Juerg Leuthold,et al.  Harnessing nonlinearities near material absorption resonances for reducing losses in plasmonic modulators , 2017 .

[13]  Wolfgang Freude,et al.  Silicon–Organic and Plasmonic–Organic Hybrid Photonics , 2017 .

[14]  A. F. Tillack,et al.  Simple Model for the Benzene Hexafluorobenzene Interaction. , 2017, The journal of physical chemistry. B.

[15]  D Hillerkuss,et al.  Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. , 2017, Optics express.

[16]  Juerg Leuthold,et al.  Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design. , 2017, Optics express.

[17]  Bruce H. Robinson,et al.  Toward optimal EO response from ONLO chromophores: a statistical mechanics study of optimizing shape , 2016 .

[18]  M. Burla,et al.  Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves. , 2016, Optics express.

[19]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[20]  Ray T. Chen,et al.  High Performance Optical Modulator Based on Electro-Optic Polymer Filled Silicon Slot Photonic Crystal Waveguide , 2016, Journal of Lightwave Technology.

[21]  David Hillerkuss,et al.  Plasmonic Organic Hybrid Modulators—Scaling Highest Speed Photonics to the Microscale , 2016, Proceedings of the IEEE.

[22]  A. F. Tillack,et al.  Direct RF-to-optical detection by plasmonic modulator integrated into a four-leaf-clover antenna , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[23]  C Koos,et al.  Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology. , 2016, Optics express.

[24]  Peter J. Winzer,et al.  A Third of a Century of Lightwave Technology January 1983–April 2016 (Editorial) , 2016 .

[25]  Ruimin Xu,et al.  Structure–function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores , 2016 .

[26]  D. Hillerkuss,et al.  108 Gbit/s Plasmonic Mach–Zehnder Modulator with > 70-GHz Electrical Bandwidth , 2016, Journal of Lightwave Technology.

[27]  Juerg Leuthold,et al.  Atomic Scale Plasmonic Switch. , 2016, Nano letters.

[28]  C. Koos,et al.  Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration , 2015, Journal of Lightwave Technology.

[29]  Juerg Leuthold,et al.  Ultra-Fast Millimeter Wave Beam Steering , 2016, IEEE Journal of Quantum Electronics.

[30]  D. Paschoal,et al.  Computational protocol to predict hyperpolarizabilities of large π-conjugated organic push–pull molecules , 2016 .

[31]  Alexey V. Krasavin,et al.  Active Nanophotonic Circuitry Based on Dielectric‐loaded Plasmonic Waveguides , 2015 .

[32]  D Hillerkuss,et al.  High speed plasmonic modulator array enabling dense optical interconnect solutions. , 2015, Optics express.

[33]  David Hillerkuss,et al.  Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna , 2015, Nano letters.

[34]  A. F. Tillack,et al.  Electro-Optic Material Design Criteria Derived from Condensed Matter Simulations Using the Level-of-Detail Coarse-Graining Approach , 2015 .

[35]  L. Dalton,et al.  Organic Electro-Optics and Photonics: Molecules, Polymers, and Crystals Larry R. Dalton, Peter Günter, Mojca Jazbinsek, O-Pil Kwon, and Philip A. Sullivan , 2015 .

[36]  Wolfgang Freude,et al.  High-speed and low-power silicon-organic hybrid modulators for advanced modulation formats , 2015, Europe Optics + Optoelectronics.

[37]  C. Koos,et al.  Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[38]  B. Robinson,et al.  Dielectric and phase behavior of dipolar spheroids. , 2015, The journal of physical chemistry. B.

[39]  Wolfgang Freude,et al.  DAC-Less Amplifier-Less Generation and Transmission of QAM Signals Using Sub-Volt Silicon-Organic Hybrid Modulators , 2015, Journal of Lightwave Technology.

[40]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.

[41]  Relation of system dimensionality and order parameters. , 2015, The journal of physical chemistry. B.

[42]  Wolfgang Freude,et al.  40 GBd 16QAM Signaling at 160 Gb/s in a Silicon-Organic Hybrid Modulator , 2015, Journal of Lightwave Technology.

[43]  Vladimir M. Shalaev,et al.  Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited] , 2015 .

[44]  M. Lauermann,et al.  Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats. , 2014, Optics express.

[45]  Kerry Garrett,et al.  Optimum Exchange for Calculation of Excitation Energies and Hyperpolarizabilities of Organic Electro-optic Chromophores. , 2014, Journal of chemical theory and computation.

[46]  Wolfgang Freude,et al.  High-Speed, Low Drive-Voltage Silicon-Organic Hybrid Modulator Based on a Binary-Chromophore Electro-Optic Material , 2014, Journal of Lightwave Technology.

[47]  Lewis E Johnson,et al.  Optimizing calculations of electronic excitations and relative hyperpolarizabilities of electrooptic chromophores. , 2014, Accounts of chemical research.

[48]  Raluca Dinu,et al.  100 GHz silicon–organic hybrid modulator , 2014, Light: Science & Applications.

[49]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[50]  J. Leuthold,et al.  Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. , 2014, Optics express.

[51]  S. Chandrasekhar,et al.  Monolithic Silicon Photonic Integrated Circuits for Compact 100 $^{+}$Gb/s Coherent Optical Receivers and Transmitters , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[52]  Bruce H. Robinson,et al.  Modeling Chromophore Order: A Guide For Improving EO Performance , 2014 .

[53]  Ulf Peschel,et al.  Functional plasmonic nanocircuits with low insertion and propagation losses. , 2013, Nano letters.

[54]  J. Leuthold,et al.  Low Power Mach–Zehnder Modulator in Silicon-Organic Hybrid Technology , 2013, IEEE Photonics Technology Letters.

[55]  Chongjin Xie,et al.  112-Gb/s monolithic PDM-QPSK modulator in silicon. , 2012, Optics express.

[56]  Jie Sun,et al.  Open Foundry Platform for High-performance Electronic-photonic Integration References and Links , 2022 .

[57]  Antao Chen,et al.  Broadband optical modulators : science, technology, and applications , 2011 .

[58]  Masaya Notomi,et al.  Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip , 2011, IET Circuits Devices Syst..

[59]  Bruce H Robinson,et al.  Dielectric dependence of the first molecular hyperpolarizability for electro-optic chromophores. , 2011, The journal of physical chemistry. B.

[60]  Xiaolong Wang,et al.  Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides. , 2011, Optics letters.

[61]  T. Baehr‐Jones,et al.  Silicon-polymer hybrid slot waveguide ring-resonator modulator. , 2011, Optics express.

[62]  Bruce H. Robinson,et al.  Systematic Nanoengineering of Soft Matter Organic Electro-optic Materials† , 2011 .

[63]  Antao Chen,et al.  Measuring order in contact-poled organic electrooptic materials with variable-angle polarization-referenced absorption spectroscopy (VAPRAS). , 2011, The journal of physical chemistry. B.

[64]  Robin Barnes,et al.  Reduced dimensionality in organic electro-optic materials: theory and defined order. , 2010, The journal of physical chemistry. B.

[65]  Jingdong Luo,et al.  Tuning the Kinetics and Energetics of Diels−Alder Cycloaddition Reactions to Improve Poling Efficiency and Thermal Stability of High-Temperature Cross-Linked Electro-Optic Polymers , 2010 .

[66]  Ray T. Chen,et al.  Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement , 2010 .

[67]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[68]  Larry R Dalton,et al.  Electric field poled organic electro-optic materials: state of the art and future prospects. , 2010, Chemical reviews.

[69]  Wolfgang Freude,et al.  Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries. , 2009, Optics express.

[70]  Wolfgang Freude,et al.  Silicon Organic Hybrid Technology—A Platform for Practical Nonlinear Optics , 2009, Proceedings of the IEEE.

[71]  B. Chen,et al.  Environmental Stress Testing of Electro–Optic Polymer Modulators , 2009, Journal of Lightwave Technology.

[72]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[73]  A. Jen,et al.  Controlled Diels−Alder Reactions Used To Incorporate Highly Efficient Polyenic Chromophores into Maleimide-Containing Side-Chain Polymers for Electro-Optics , 2009 .

[74]  Manfred Eich,et al.  Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator. , 2009, Optics express.

[75]  Michael Hochberg,et al.  A Hybrid Electrooptic Microring Resonator-Based 1 4 1 ROADM for Wafer Scale Optical Interconnects , 2009 .

[76]  Harry A Atwater,et al.  PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. , 2009, Nano letters.

[77]  Bruce H. Robinson,et al.  Laser-Assisted Poling of Binary Chromophore Materials† , 2008 .

[78]  Larry R. Dalton,et al.  Photostability studies of π-conjugated chromophores with resonant and nonresonant light excitation for long-life polymeric telecommunication devices , 2007 .

[79]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[80]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[81]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[82]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[83]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[84]  Steven G. Johnson,et al.  Photonic-crystal slow-light enhancement of nonlinear phase sensitivity , 2002 .

[85]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[86]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[87]  C. C. Teng,et al.  Simple reflection technique for measuring the electro‐optic coefficient of poled polymers , 1990 .

[88]  Mark G. Kuzyk,et al.  Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties , 1987 .

[89]  J. Oudar,et al.  Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment , 1977 .