Optimal control of dynamic systems: Application to spline approximations

Generally, classical polynomial splines tend to exhibit unwanted undulations. In this work, we discuss a technique, based on control principles, for eliminating these undulations and increasing the smoothness properties of the spline interpolants. We give a generalization of the classical polynomial splines and show that this generalization is, in fact, a family of splines that covers the broad spectrum of polynomial, trigonometric and exponential splines. A particular element in this family is determined by the appropriate control data. It is shown that this technique is easy to implement. Several numerical and curve-fitting examples are given to illustrate the advantages of this technique over the classical approach. Finally, we discuss the convergence properties of the interpolant.

[1]  David W. Lewis,et al.  Matrix theory , 1991 .

[2]  A. Ron,et al.  Translates of exponential box splines and their related spaces , 1988 .

[3]  J. Keener Principles of Applied Mathematics , 2019 .

[4]  D. Tucker Boundary Value Problems for Linear Differential Systems , 1969 .

[5]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[6]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[7]  I. Gohberg,et al.  Basic Operator Theory , 1981 .

[8]  J. Ortega Matrix Theory: A Second Course , 1987 .

[9]  Steven Pruess,et al.  Properties of splines in tension , 1976 .

[10]  J. Miller Numerical Analysis , 1966, Nature.

[11]  W. Weston Meyer,et al.  Optimal error bounds for cubic spline interpolation , 1976 .

[12]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[13]  G. Siouris,et al.  Optimum systems control , 1979, Proceedings of the IEEE.

[14]  Steven Pruess,et al.  Alternatives to the exponential spline in tension , 1979 .

[15]  M. Sain Finite dimensional linear systems , 1972 .

[16]  B. McCartin Theory of exponential splines , 1991 .

[17]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[18]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[19]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[20]  Alan M Baum An algebraic approach to simple hyperbolic splines on the real line , 1976 .

[21]  A. Ron,et al.  Local approximation by certain spaces of exponential polynomials, approximation order of exponential box splines, and related interpolation problems , 1990 .

[22]  C. A. Hall,et al.  On error bounds for spline interpolation , 1968 .

[23]  W. Ames Mathematics in Science and Engineering , 1999 .

[24]  B. Anderson,et al.  Linear Optimal Control , 1971 .

[25]  F. R. Gantmakher The Theory of Matrices , 1984 .

[26]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[27]  J. Aubin Approximation of Elliptic Boundary-Value Problems , 1980 .