Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes

The applicability of ADER finite volume methods to solve hyperbolic balance laws with stiff source terms in the context of well-balanced and non-conservative schemes is extended to solve a one-dimensional blood flow model for viscoelastic vessels, reformulated as a hyperbolic system, via a relaxation time. A criterion for selecting relaxation times is found and an empirical convergence rate assessment is carried out to support this result. The proposed methodology is validated by applying it to a network of viscoelastic vessels for which experimental and numerical results are available. The agreement between the results obtained in the present paper and those available in the literature is satisfactory. Key features of the present formulation and numerical methodologies, such as accuracy, efficiency and robustness, are fully discussed in the paper.

[1]  S. Sherwin,et al.  Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements. , 2007, Journal of biomechanics.

[2]  Michael Dumbser,et al.  Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms , 2012, J. Comput. Phys..

[3]  G. Karniadakis,et al.  Modeling Blood Flow Circulation in Intracranial Arterial Networks: A Comparative 3D/1D Simulation Study , 2010, Annals of Biomedical Engineering.

[4]  Fermín Navarrina,et al.  A finite element formulation for a convection-diffusion equation based on Cattaneo's law , 2007 .

[5]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[6]  Philip L. Roe,et al.  Towards High-Order Fluctuation-Splitting Schemes for Navier-Stokes Equations , 2005 .

[7]  Lucas O. Müller,et al.  Well‐balanced high‐order solver for blood flow in networks of vessels with variable properties , 2013, International journal for numerical methods in biomedical engineering.

[8]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[9]  S. Sherwin,et al.  Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements , 2011, Journal of biomechanics.

[10]  Eleuterio F. Toro,et al.  Solvers for the high-order Riemann problem for hyperbolic balance laws , 2008, J. Comput. Phys..

[11]  Giovanni Russo,et al.  Flux-Explicit IMEX Runge-Kutta Schemes for Hyperbolic to Parabolic Relaxation Problems , 2013, SIAM J. Numer. Anal..

[12]  F. Navarrina,et al.  A Generalized Method For Advective-diffusiveComputations In Engineering , 2005 .

[13]  Lorenzo Pareschi,et al.  Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..

[14]  Thomas J. R. Hughes,et al.  In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts , 2003, IEEE Transactions on Biomedical Engineering.

[15]  S. Sherwin,et al.  Lumped parameter outflow models for 1-D blood flow simulations: Effect on pulse waves and parameter estimation , 2008 .

[16]  P. Blanco,et al.  On the potentialities of 3D-1D coupled models in hemodynamics simulations. , 2009, Journal of biomechanics.

[17]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[18]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[19]  Gabriel Nagy,et al.  The behavior of hyperbolic heat equations' solutions near their parabolic limits , 1994 .

[20]  Timothy J. Pedley,et al.  Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state , 1999, Journal of Fluid Mechanics.

[21]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[22]  M. J. Castro,et al.  ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows , 2009 .

[23]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[24]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[25]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[26]  Claus-Dieter Munz,et al.  ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D , 2002, J. Sci. Comput..

[27]  Michael Dumbser,et al.  ADER discontinuous Galerkin schemes for aeroacoustics , 2005 .

[28]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[29]  Martin Käser,et al.  Adaptive Methods for the Numerical Simulation of Transport Processes , 2003 .

[30]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[31]  Hiroaki Nishikawa New-Generation Hyperbolic Navier-Stokes Schemes: O(1=h) Speed-Up and Accurate Viscous/Heat Fluxes , 2011 .

[32]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[33]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[34]  Hiroaki Nishikawa,et al.  A first-order system approach for diffusion equation. II: Unification of advection and diffusion , 2010, J. Comput. Phys..

[35]  S. Sherwin,et al.  One-dimensional modelling of a vascular network in space-time variables , 2003 .

[36]  C. Cattaneo,et al.  Sulla Conduzione Del Calore , 2011 .

[37]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[38]  Lucas O. Müller,et al.  Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties , 2013, J. Comput. Phys..

[39]  S. Sherwin,et al.  Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. , 2007, Journal of biomechanics.

[40]  Michael Dumbser,et al.  Building Blocks for Arbitrary High Order Discontinuous Galerkin Schemes , 2006, J. Sci. Comput..

[41]  J. Alastruey,et al.  A systematic comparison between 1‐D and 3‐D hemodynamics in compliant arterial models , 2014, International journal for numerical methods in biomedical engineering.

[42]  M. J. Castro,et al.  FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems , 2010 .

[43]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[44]  Michael Dumbser,et al.  ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..

[45]  C. Parés Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .

[46]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[47]  Arturo Hidalgo,et al.  ADER Finite Volume Schemes for Nonlinear Diffusion-Reaction Equations , 2007 .

[48]  Rémi Abgrall,et al.  Two-Layer Shallow Water System: A Relaxation Approach , 2009, SIAM J. Sci. Comput..

[49]  Hiroaki Nishikawa,et al.  On High-Order Fluctuation-Splitting Schemes for Navier-Stokes Equations , 2009 .

[50]  Ryutaro Himeno,et al.  Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses , 2009, Medical & Biological Engineering & Computing.

[51]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[52]  E. Toro,et al.  Numerical and analytical study of an atherosclerosis inflammatory disease model , 2014, Journal of mathematical biology.

[53]  G. D. Maso,et al.  Definition and weak stability of nonconservative products , 1995 .

[54]  Eleuterio F. Toro,et al.  Flow in Collapsible Tubes with Discontinuous Mechanical Properties: Mathematical Model and Exact Solutions , 2013 .

[55]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[56]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[57]  Michael Dumbser,et al.  Well-Balanced High-Order Centred Schemes for Non-Conservative Hyperbolic Systems. Applications to Shallow Water Equations with Fixed and Mobile Bed , 2009 .

[58]  N. Stergiopulos,et al.  Validation of a one-dimensional model of the systemic arterial tree. , 2009, American journal of physiology. Heart and circulatory physiology.

[59]  Michael Dumbser,et al.  Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations , 2010 .

[60]  Lucas O Müller,et al.  A global multiscale mathematical model for the human circulation with emphasis on the venous system , 2014, International journal for numerical methods in biomedical engineering.

[61]  Hiroaki Nishikawa,et al.  A first-order system approach for diffusion equation. I: Second-order residual-distribution schemes , 2007, J. Comput. Phys..