Optical rogue wave in random fiber laser

The famous demonstration of optical rogue waves (RWs), a powerful tool to reveal the fundamental physics in different laser scenarios, opened a flourishing time for temporal statistics. Random fiber laser (RFL) has likewise attracted wide attention due to its great potential in multidisciplinary demonstrations and promising applications. However, owing to the distinctive cavity-free structure, it is a scientific challenge to achieve temporal localized RWs in RFLs, whose feedback arises from multiple scattering in disordered medium. Here, we report the exploration of RW in the highly skewed, transient intensity of an incoherently pumped RFL for the first time, to our knowledge, and unfold the involved kinetics successfully. The corresponding frequency domain measurements demonstrate that the RW event arises from a crucial sustained stimulated Brillouin scattering process with intrinsic stochastic nature. This investigation highlights a novel path to fully understanding the complex physics, such as photon propagation and localization, in disordered media.

[1]  Miro Erkintalo,et al.  Raman rogue waves in a partially mode-locked fiber laser. , 2014, Optics letters.

[2]  E. Raposo,et al.  Lévy spectral intensity statistics in a Raman random fiber laser , 2019, Optics Letters.

[3]  Miro Erkintalo,et al.  Instabilities, breathers and rogue waves in optics , 2014, Nature Photonics.

[4]  S. Vergeles,et al.  Intensity statistics in a long random fiber Raman laser. , 2018, Optics letters.

[5]  V. Laude,et al.  Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres , 2006 .

[6]  D. Churkin,et al.  Spectral correlations in a random distributed feedback fibre laser , 2017, Nature Communications.

[7]  Diederik S. Wiersma,et al.  The physics and applications of random lasers , 2008 .

[8]  Zhaoming Zhu,et al.  Stored Light in an Optical Fiber via Stimulated Brillouin Scattering , 2007, Science.

[9]  S. Babin,et al.  270-km ultralong Raman fiber laser. , 2009, Physical review letters.

[10]  J. Ballato,et al.  Random lasing in an Anderson localizing optical fiber , 2016, Light: Science & Applications.

[11]  Cristina Masoller,et al.  Roadmap on optical rogue waves and extreme events , 2016 .

[12]  A. Mafi Transverse Anderson localization of light: a tutorial review , 2015, 1505.01109.

[13]  A. Genack,et al.  Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization. , 2005, Physical review letters.

[14]  N. Tarasov,et al.  Vector-Resonance-Multimode Instability. , 2017, Physical review letters.

[15]  Yan Feng,et al.  Ultrafast Raman fiber Laser with Random Distributed Feedback , 2018 .

[16]  E. Raposo,et al.  Extreme-value statistics of intensities in a cw-pumped random fiber laser , 2017 .

[17]  Ammar Hideur,et al.  Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser. , 2002, Optics letters.

[18]  E. Raposo,et al.  Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements , 2016, Scientific Reports.

[19]  J. W. Lou,et al.  Brillouin fibre laser enhanced by Raman amplification , 2004 .

[20]  Yunjiang Rao,et al.  Recent advances in fundamentals and applications of random fiber lasers , 2015 .

[21]  E. Raposo,et al.  Random lasers, L\'evy statistics and spin glasses: Synergy between photonics and complex systems , 2015, 1509.00276.

[22]  G. L. Vasconcelos,et al.  Turbulence hierarchy in a random fibre laser , 2017, Nature Communications.

[23]  P. Grelu,et al.  Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. , 2012, Physical review letters.

[24]  Physical manifestation of extreme events in random lasers. , 2015, Optics letters.

[25]  D. Solli,et al.  Recent progress in investigating optical rogue waves , 2013 .

[26]  Chengbo Mou,et al.  Slow deterministic vector rogue waves , 2016, SPIE LASE.

[27]  B Shapiro,et al.  Random resonators and prelocalized modes in disordered dielectric films. , 2002, Physical review letters.

[28]  S. Babin,et al.  Random distributed feedback fibre lasers , 2014 .

[30]  G. Ruocco,et al.  Disorder-induced single-mode transmission , 2017, Nature Communications.

[31]  Patrice Mégret,et al.  Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback , 2004 .

[32]  Hui Cao,et al.  Modes of random lasers , 2010, 1001.4671.

[33]  Hani Kbashi,et al.  Dynamics of vector rogue waves in a fiber laser with a ring cavity , 2016 .

[34]  Cristina Masoller,et al.  Deterministic optical rogue waves. , 2011, Physical review letters.

[35]  Ricardo Sevilla-Escoboza,et al.  Rogue waves in a multistable system. , 2011, Physical review letters.

[36]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[37]  Liangjin Huang,et al.  1.01 kW superfluorescent source in all-fiberized MOPA configuration. , 2015, Optics express.

[38]  Raman Kashyap,et al.  Observation of Lévy statistics in one-dimensional erbium-based random fiber laser , 2017 .

[39]  N. Lawandy,et al.  Laser action in strongly scattering media , 1994, Nature.

[40]  S. Babin,et al.  Raman fiber lasers with a random distributed feedback based on Rayleigh scattering , 2010 .

[41]  Sergei K. Turitsyn,et al.  Random distributed feedback fiber laser , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[42]  Umberto Bortolozzo,et al.  Rogue waves and their generating mechanisms in different physical contexts , 2013 .

[43]  Yulong Tang,et al.  A random Q-switched fiber laser , 2015, Scientific Reports.

[44]  Hamootal Duadi,et al.  Ultrafast rogue wave patterns in fiber lasers , 2018, Optica.

[45]  Vladilen S. Letokhov,et al.  5A10(b) - A laser with a nonresonant feedback , 1966 .

[46]  S. Turitsyn,et al.  Wave kinetics of random fibre lasers , 2015, Nature Communications.

[47]  M. Sauer,et al.  Stimulated Brillouin scattering in optical fibers , 2010 .

[48]  Stefan Rotter,et al.  Strong Interactions in Multimode Random Lasers , 2008, Science.