Human neural systems for conceptual knowledge of proper object use: a functional magnetic resonance imaging study.

Ideational apraxia is characterized by impaired knowledge of action concepts and proper object usage. The present functional magnetic resonance imaging study aimed at investigating the neural system underlying conceptual knowledge for proper object use in healthy subjects, when the effects of visuospatial properties and perceptual modality were taken into account. Subjects performed semantic decision tasks requiring retrieval of knowledge about either object functional purposes (functional task) or visuospatial object properties (visuospatial task) and perceptual control tasks. The semantic tasks were performed with pairs of either written object names or object drawings. Activation for the functional task in common for words and pictures, compared with the visuospatial and control tasks, was found in left parietal-temporal-occipital (PTO) junction, inferior frontal, anterior dorsal premotor, and presupplementary motor areas. Ventral inferior frontal cortex activation correlated negatively with reaction time in the functional condition. No specific activation characterized the visuospatial task compared with the functional task. The conceptual tasks, compared with the control tasks, demonstrated overlapping activation in left PTO junction, prefrontal, dorsal premotor, cuneus, and inferior temporal areas. These results outline the neural processes underlying conceptual knowledge for proper object use. The left ventral inferior frontal gyrus might facilitate behavioral decisions regarding functional/pragmatical object properties.

[1]  Larry Gates,et al.  Distinct and shared cortical regions of the human brain activated by pictorial depictions versus verbal descriptions: an fMRI study , 2005, NeuroImage.

[2]  Victor W. Henderson,et al.  Anatomy of posterior pathways in reading: A reassessment , 1986, Brain and Language.

[3]  M. L. Lambon Ralph,et al.  The role of conceptual knowledge in object use evidence from semantic dementia. , 2000, Brain : a journal of neurology.

[4]  James L. McClelland,et al.  The parallel distributed processing approach to semantic cognition , 2003, Nature Reviews Neuroscience.

[5]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[6]  J R Hodges,et al.  "What" and "how": evidence for the dissociation of object knowledge and mechanical problem-solving skills in the human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[8]  C. Price,et al.  A functional neuroimaging study of the variables that generate category-specific object processing differences. , 1999, Brain : a journal of neurology.

[9]  D. Perani,et al.  Different neural systems for the recognition of animals and man‐made tools , 1995, Neuroreport.

[10]  Jemett L. Desmond,et al.  Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Richard S. J. Frackowiak,et al.  Functional anatomy of a common semantic system for words and pictures , 1996, Nature.

[12]  B. Horwitz,et al.  Functional connectivity of the angular gyrus in normal reading and dyslexia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Leslie G. Ungerleider,et al.  Discrete Cortical Regions Associated with Knowledge of Color and Knowledge of Action , 1995, Science.

[14]  R. Adolphs,et al.  NEURAL CORRELATES OF CONCEPTUAL KNOWLEDGE FOR ACTIONS , 2003, Cognitive neuropsychology.

[15]  L. Tyler,et al.  Unitary vs multiple semantics: PET studies of word and picture processing , 2004, Brain and Language.

[16]  A. Damasio,et al.  Neural Correlates of Naming Actions and of Naming Spatial Relations , 2001, NeuroImage.

[17]  Christine D. Wilson,et al.  Grounding conceptual knowledge in modality-specific systems , 2003, Trends in Cognitive Sciences.

[18]  Matthew H. Davis,et al.  Is there an anatomical basis for category-specificity? Semantic memory studies in PET and fMRI , 2002, Neuropsychologia.

[19]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[20]  Karl J. Friston,et al.  Cognitive Conjunction: A New Approach to Brain Activation Experiments , 1997, NeuroImage.

[21]  Stefano F. Cappa,et al.  Word and picture matching: a PET study of semantic category effects , 1999, Neuropsychologia.

[22]  J. Desmond,et al.  Functional Specialization for Semantic and Phonological Processing in the Left Inferior Prefrontal Cortex , 1999, NeuroImage.

[23]  Hanna Damasio,et al.  Premotor and Prefrontal Correlates of Category-Related Lexical Retrieval , 1998, NeuroImage.

[24]  Alex Martin,et al.  Experience-dependent modulation of category-related cortical activity. , 2002, Cerebral cortex.

[25]  M. Farah,et al.  A functional MRI study of mental image generation , 1997, Neuropsychologia.

[26]  P. Strick,et al.  Imaging the premotor areas , 2001, Current Opinion in Neurobiology.

[27]  R. E Passingham,et al.  Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study , 2003, NeuroImage.

[28]  Barry Horwitz,et al.  fMRI study comparing names versus pictures of objects , 2002, Human brain mapping.

[29]  Lorraine K. Tyler,et al.  Objects and their actions: evidence for a neurally distributed semantic system , 2003, NeuroImage.

[30]  A. Damasio,et al.  The anatomic basis of pure alexia , 1983, Neurology.

[31]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[32]  A. Caramazza,et al.  Domain-Specific Knowledge Systems in the Brain: The Animate-Inanimate Distinction , 1998, Journal of Cognitive Neuroscience.

[33]  E. Warrington,et al.  Categories of knowledge. Further fractionations and an attempted integration. , 1987, Brain : a journal of neurology.

[34]  C. Price The anatomy of language: contributions from functional neuroimaging , 2000, Journal of anatomy.

[35]  J. Feldman,et al.  Embodied meaning in a neural theory of language , 2004, Brain and Language.

[36]  Scott T. Grafton,et al.  Premotor Cortex Activation during Observation and Naming of Familiar Tools , 1997, NeuroImage.

[37]  L. Aravind,et al.  Integration of Word Meaning and World Knowledge in Language Comprehension , 2022 .

[38]  Uta Noppeney,et al.  Can segregation within the semantic system account for category-specific deficits? , 2002, Brain : a journal of neurology.

[39]  Scott T. Grafton,et al.  Selective Activation of a Parietofrontal Circuit during Implicitly Imagined Prehension , 2002, NeuroImage.

[40]  C. Price,et al.  Functional Neuroanatomy of the Semantic System: Divisible by What? , 1998, Journal of Cognitive Neuroscience.

[41]  R. Buckner,et al.  Common Prefrontal Regions Coactivate with Dissociable Posterior Regions during Controlled Semantic and Phonological Tasks , 2002, Neuron.

[42]  Kara D. Federmeier,et al.  Timed picture naming in seven languages , 2003, Psychonomic bulletin & review.

[43]  C. Price,et al.  A PET Study of Stimulus- and Task-Induced Semantic Processing , 2002, NeuroImage.

[44]  E. Miller,et al.  THE PREFRONTAL CORTEX AND COGNITIVE CONTROL , 2000 .

[45]  A. Pick Studien über motorische Apraxie und ihr nahestehende Erscheinungen : ihre Bedeutung in der Symptomatologie psychopatischer Symptomenkomplexe , 1905 .

[46]  G. Lakoff,et al.  The Brain's concepts: the role of the Sensory-motor system in conceptual knowledge , 2005, Cognitive neuropsychology.

[47]  M. Denis,et al.  Cortical anatomy of mental imagery of concrete nouns based on their dictionary definition , 1998, Neuroreport.

[48]  A. Ishai,et al.  Distributed neural systems for the generation of visual images , 2000, NeuroImage.

[49]  Andrew Kertesz,et al.  Praxis and language: The extent and variety of apraxia in aphasia , 1982, Neuropsychologia.

[50]  G. Rizzolatti,et al.  Motor and cognitive functions of the ventral premotor cortex , 2002, Current Opinion in Neurobiology.

[51]  Karl J. Friston,et al.  Two distinct neural mechanisms for category-selective responses. , 2006, Cerebral cortex.

[52]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[53]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[54]  Stephen M. Rao,et al.  Human Brain Language Areas Identified by Functional Magnetic Resonance Imaging , 1997, The Journal of Neuroscience.

[55]  T. Shallice,et al.  Category specific semantic impairments , 1984 .

[56]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[57]  T. Shallice,et al.  Modality-Specific Operations in Semantic Dementia , 1997, Cortex.

[58]  Scott H. Johnson-Frey The neural bases of complex tool use in humans , 2004, Trends in Cognitive Sciences.

[59]  J. Dejerine,et al.  Contribution a l'etude anatomo-pathologique et clinique des differentes varietes de cecite verbale , 2000 .

[60]  Jobu Watanabe,et al.  Mental visual synthesis is originated in the fronto-temporal network of the left hemisphere. , 2004, Cerebral cortex.

[61]  L. K. Tyler,et al.  Conceptual Structure and the Structure of Concepts: A Distributed Account of Category-Specific Deficits , 2000, Brain and Language.

[62]  S. Thompson-Schill Neuroimaging studies of semantic memory: inferring “how” from “where” , 2003, Neuropsychologia.

[63]  K. Poeck Ideational apraxia , 2004, Journal of Neurology.

[64]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[65]  L. Tyler,et al.  Towards a distributed account of conceptual knowledge , 2001, Trends in Cognitive Sciences.

[66]  K. Heilman,et al.  Ideational apraxia: A deficit in tool selection and use , 1989, Annals of neurology.

[67]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[68]  Julie S. Snowden,et al.  Semantic-Episodic Memory Interactions in Semantic Dementia: Implications for Retrograde Memory Function , 1996 .

[69]  J B Poline,et al.  Partially overlapping neural networks for real and imagined hand movements. , 2000, Cerebral cortex.

[70]  J. Desmond,et al.  The role of left prefrontal cortex in language and memory. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Alex Martin,et al.  Semantic memory and the brain: structure and processes , 2001, Current Opinion in Neurobiology.

[72]  P. Hagoort On Broca, brain, and binding: a new framework , 2005, Trends in Cognitive Sciences.

[73]  H. Liepmann,et al.  Die linke Hemisphäre und das Handeln.1) , 1908 .

[74]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[75]  White Studien uber motorische Apraxie und ihr nahestehende Erscheinungen; ihre Bedeutung in der Symptomatologie psychopathischer Symptomen komplexe , 1905 .

[76]  A. Damasio,et al.  A neural basis for the retrieval of conceptual knowledge , 1997, Neuropsychologia.

[77]  Alex Martin,et al.  Representation of Manipulable Man-Made Objects in the Dorsal Stream , 2000, NeuroImage.

[78]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.