Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems

We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free) energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1=2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.

[1]  Andrea Micheli,et al.  Dynamical phase transitions and instabilities in open atomic many-body systems. , 2010, Physical review letters.

[2]  H. Weimer Variational principle for steady states of dissipative quantum many-body systems. , 2014, Physical review letters.

[3]  G Vidal Classical simulation of infinite-size quantum lattice systems in one spatial dimension. , 2007, Physical review letters.

[4]  Christine Guerlin,et al.  Dicke quantum phase transition with a superfluid gas in an optical cavity , 2009, Nature.

[5]  Carmichael,et al.  Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[6]  G. Vidal,et al.  Infinite time-evolving block decimation algorithm beyond unitary evolution , 2008 .

[7]  A. H. Werner,et al.  Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems. , 2014, Physical review letters.

[8]  I. Carusotto,et al.  Fermionized photons in an array of driven dissipative nonlinear cavities. , 2008, Physical review letters.

[9]  Mikhail D Lukin,et al.  Unconventional magnetism via optical pumping of interacting spin systems. , 2013, Physical review letters.

[10]  C. Ciuti,et al.  Bose-Hubbard Model: Relation Between Driven-Dissipative Steady-States and Equilibrium Quantum Phases , 2014, 1408.1330.

[11]  I. Carusotto,et al.  Photon transport in a dissipative chain of nonlinear cavities , 2014, 1412.2509.

[12]  J. V. Vleck On the Theory of Antiferromagnetism , 1941 .

[13]  P. Zoller,et al.  Topology by dissipation , 2013, 1302.5135.

[14]  S. Korshunov Phase diagram of a chain of dissipative Josephson junctions (Erratum) , 1989 .

[15]  M. Fleischhauer,et al.  Antiferromagnetic long-range order in dissipative Rydberg lattices , 2014, 1404.1281.

[16]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[17]  A. Czirók,et al.  Collective Motion , 1999, physics/9902023.

[18]  Tony E. Lee,et al.  Antiferromagnetic phase transition in a nonequilibrium lattice of Rydberg atoms , 2011, 1104.0908.

[19]  H. Bethe Statistical Theory of Superlattices , 1935 .

[20]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[21]  Franziska Abend,et al.  Sync The Emerging Science Of Spontaneous Order , 2016 .

[22]  F. Brennecke,et al.  Cold atoms in cavity-generated dynamical optical potentials , 2012, 1210.0013.

[23]  I. Carusotto,et al.  Fractional quantum Hall states of photons in an array of dissipative coupled cavities. , 2011, Physical review letters.

[24]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[25]  T. Prosen,et al.  Exact steady state manifold of a boundary driven spin-1 Lai-Sutherland chain , 2014, 1402.0342.

[26]  J. P. Garrahan,et al.  Facilitated spin models of dissipative quantum glasses. , 2012, Physical review letters.

[27]  E. Demler,et al.  Dynamics and universality in noise-driven dissipative systems , 2011, 1110.3678.

[28]  J. Toner,et al.  Flocks, herds, and schools: A quantitative theory of flocking , 1998, cond-mat/9804180.

[29]  Michael Zwolak,et al.  Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. , 2004, Physical review letters.

[30]  I. Carusotto,et al.  Signatures of the superfluid-insulator phase transition in laser-driven dissipative nonlinear cavity arrays , 2009, 0904.4437.

[31]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[32]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[33]  A. Gorshkov,et al.  Nonequilibrium many-body steady states via Keldysh formalism. , 2015, Physical review. B.

[34]  Michael J. Hartmann,et al.  Self-consistent projection operator theory for quantum many-body systems , 2013, 1307.7027.

[35]  G. Blatter,et al.  Incompressible Polaritons in a Flat Band. , 2015, Physical review letters.

[36]  D. Petrosyan,et al.  Steady-state crystallization of Rydberg excitations in an optically driven lattice gas , 2012, 1208.2911.

[37]  M. Leib,et al.  Steady-state phase diagram of a driven QED-cavity array with cross-Kerr nonlinearities , 2014, 1404.6063.

[38]  Jens Koch,et al.  Nonlinear response of the vacuum Rabi resonance , 2008, 0807.2882.

[39]  Chakravarty,et al.  Onset of global phase coherence in Josephson junction arrays: A dissipative phase transition. , 1986, Physical review letters.

[40]  J. Cirac,et al.  Strong Dissipation Inhibits Losses and Induces Correlations in Cold Molecular Gases , 2008, Science.

[41]  U. Weiss Quantum Dissipative Systems , 1993 .

[42]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[43]  R. Kikuchi A Theory of Cooperative Phenomena , 1951 .

[44]  Thermalization in a coherently driven ensemble of two-level systems. , 2010, Physical review letters.

[45]  Beate Schmittmann,et al.  Statistical mechanics of driven diffusive systems , 1995 .

[46]  M. Lavagna Quantum Phase Transitions , 2001, cond-mat/0102119.

[47]  Klaus Mølmer,et al.  A Monte Carlo wave function method in quantum optics , 1993, Optical Society of America Annual Meeting.

[48]  S. Diehl,et al.  Dynamical critical phenomena in driven-dissipative systems. , 2013, Physical review letters.

[49]  R. Fazio,et al.  Exotic Attractors of the Nonequilibrium Rabi-Hubbard Model. , 2015, Physical review letters.

[50]  R. Fazio,et al.  Many-body phenomena in QED-cavity arrays [Invited] , 2010, 1005.0137.

[51]  S. R. Clark,et al.  Non-equilibrium many-body effects in driven nonlinear resonator arrays , 2012, 1205.0994.

[52]  Limit-cycle phase in driven-dissipative spin systems , 2015, 1501.00979.

[53]  M. Suzuki,et al.  Statistical mechanical theory of cooperative phenomena. I: General theory of fluctuations, coherent anomalies and scaling exponents with simple applications to critical phenomena , 1986 .

[54]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[55]  P. Zoller,et al.  Engineered Open Systems and Quantum Simulations with Atoms and Ions , 2012, 1203.6595.

[56]  Quantum many-body dynamics in optomechanical arrays. , 2012, Physical review letters.

[57]  E. Arrigoni,et al.  Nonequilibrium dynamical mean-field theory: an auxiliary quantum master equation approach. , 2012, Physical review letters.

[58]  C. Adams,et al.  Driven-dissipative many-body systems with mixed power-law interactions: Bistabilities and temperature-driven nonequilibrium phase transitions , 2015, 1512.02123.

[59]  R. Fazio,et al.  Dissipative topological superconductors in number-conserving systems , 2015, 1512.04413.

[60]  S. Diehl,et al.  Driven Markovian Quantum Criticality. , 2015, Physical review letters.

[61]  T. Oguchi,et al.  A Theory of Antiferromagnetism, II , 1953 .

[62]  C. Ciuti,et al.  Steady-state phases and tunneling-induced instabilities in the driven dissipative Bose-Hubbard model. , 2012, Physical review letters.

[63]  Chaitanya Joshi,et al.  Quantum correlations in the one-dimensional driven dissipative XY model , 2013 .

[64]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[65]  Matteo Biondi,et al.  Nonequilibrium dynamics of coupled qubit-cavity arrays. , 2012, Physical review letters.

[66]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[67]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[68]  T. Prosen Exact nonequilibrium steady state of an open Hubbard chain. , 2013, Physical review letters.

[69]  M. Hartmann,et al.  Polariton crystallization in driven arrays of lossy nonlinear resonators. , 2009, Physical review letters.

[70]  Martin Leib,et al.  Photon solid phases in driven arrays of nonlinearly coupled cavities. , 2013, Physical review letters.

[71]  D. Petrosyan,et al.  Spatial correlations of Rydberg excitations in optically driven atomic ensembles , 2012, 1212.2423.

[72]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[73]  Simeng Yan,et al.  Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet , 2010, Science.

[74]  Jaan Oitmaa,et al.  Series Expansion Methods for Strongly Interacting Lattice Models: Introduction , 2006 .

[75]  J. Cirac,et al.  Variational Matrix Product Operators for the Steady State of Dissipative Quantum Systems. , 2015, Physical review letters.

[76]  G. Refael,et al.  Superconductor-to-normal transitions in dissipative chains of mesoscopic grains and nanowires , 2005, cond-mat/0511212.

[77]  T. Ozawa,et al.  Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics , 2015, 1510.03910.

[78]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[79]  T. Maung on in C , 2010 .

[80]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[81]  Andrew J. Daley,et al.  Quantum trajectories and open many-body quantum systems , 2014, 1405.6694.

[82]  A. Lauchli,et al.  Dynamical and steady-state properties of a Bose-Hubbard chain with bond dissipation: A study based on matrix product operators , 2014, 1405.5036.

[83]  Eduardo Mascarenhas,et al.  Matrix-product-operator approach to the nonequilibrium steady state of driven-dissipative quantum arrays , 2015, 1504.06127.

[84]  C Ciuti,et al.  Corner-Space Renormalization Method for Driven-Dissipative Two-Dimensional Correlated Systems. , 2015, Physical review letters.

[85]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[86]  J. Cirac,et al.  Pfaffian state generation by strong three-body dissipation. , 2009, Physical review letters.

[87]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .