A Family of Singly Periodic Minimal Surfaces Invariant under a Screw Motion

We construct explicitly, using the generalized Weierstrass representation, a complete embedded minimal surface M k ,θ invariant under a rotation of order k + 1 and a screw motion of angle 2θ about the same axis, where k > 0 is any integer and ois any angle with |θ| < π/(k + 1). The existence of such surfaceswas proved in [Callahan et al. 1990), but no practical procedure for constructing them was given there. We also show that the sameproblem for θ = ±π/(k+1) does not have a solution enjoying reflective symmetry; the question of the existence of a solution without such symmetry is left open.

[1]  W. Meeks,et al.  Properties of properly embedded minimal surfaces of finite topology , 1987 .

[2]  H. Lawson Lectures On Minimal Submanifolds , 1980 .

[3]  William H. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[4]  W. Meeks,et al.  Embedded minimal surfaces with an infinite number of ends , 1989 .

[5]  David Hoffman,et al.  The computer-aided discovery of new embedded minimal surfaces , 1987 .

[6]  William H. Press,et al.  Numerical recipes , 1990 .

[7]  R. Osserman A survey of minimal surfaces , 1969 .

[8]  Michael J. Callahan,et al.  Computer graphics tools for the study of minimal surfaces , 1988, CACM.

[9]  The geometry of periodic minimal surfaces , 1993 .

[10]  W. Meeks,et al.  A COMPLETE EMBEDDED MINIMAL SURFACE IN R3 WITH GENUS ONE AND 3 ENDS , 1985 .

[11]  R. Schoen Uniqueness, symmetry, and embeddedness of minimal surfaces , 1983 .

[12]  H. Karcher,et al.  Complete embedded minimal surfaces of finite total curvature , 1995, math/9508213.

[13]  Fu-Tsun Wei Some existence and uniqueness theorems for doubly periodic minimal surfaces , 1992 .

[14]  W. Meeks,et al.  The structure of singly-periodic minimal surfaces , 1990 .

[15]  H. Karcher The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions , 1989 .

[16]  David A. Hoffman Adding handles to the helicoid , 1993 .

[17]  David Hoffman,et al.  Minimal surfaces based on the catenoid , 1990 .

[18]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[19]  W. Meeks,et al.  A complete embedded minimal surface in ${\bf R}\sp 3$ with genus one and three ends , 1985 .

[20]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[21]  H. Karcher Embedded minimal surfaces derived from Scherk's examples , 1988 .

[22]  David A. Hoffman The Construction of Families of Embedded Minimal Surfaces , 1987 .

[23]  M. Wohlgemuth Higher genus minimal surfaces by growing handles out of a catenoid , 1991 .