Bayesian Propagation for Perceiving Moving Objects
暂无分享,去创建一个
Paolo Napoletano | Angelo Marcelli | Giuseppe Boccignone | Vittorio Caggiano | Gianluca Di Fiore | V. Caggiano | Giuseppe Boccignone | Paolo Napoletano | A. Marcelli | G. D. Fiore | Angelo Marcelli | Paolo Napoletano | Vittorio Caggiano
[1] J. Raymond. Attentional modulation of visual motion perception , 2000, Trends in Cognitive Sciences.
[2] Brendan J. Frey,et al. A comparison of algorithms for inference and learning in probabilistic graphical models , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[3] Edward H. Adelson,et al. A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[4] Kenneth H. Britten,et al. Motion perception: How are moving images segmented? , 1999, Current Biology.
[5] David C. Knill,et al. Introduction: a Bayesian formulation of visual perception , 1996 .
[6] T J Sejnowski,et al. A Model for Encoding Multiple Object Motions and Self-Motion in Area MST of Primate Visual Cortex , 1998, The Journal of Neuroscience.
[7] Giuseppe Boccignone,et al. Diffused expectation maximisation for image segmentation , 2004 .
[8] William T. Freeman,et al. Understanding belief propagation and its generalizations , 2003 .
[9] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[10] Shun-ichi Amari,et al. Information geometry of the EM and em algorithms for neural networks , 1995, Neural Networks.
[11] BlakeAndrew,et al. C ONDENSATION Conditional Density Propagation forVisual Tracking , 1998 .
[12] Michael Isard,et al. CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.
[13] S. Grossberg,et al. A neural model of motion processing and visual navigation by cortical area MST. , 1999, Cerebral cortex.
[14] Zenon W. Pylyshyn,et al. Situating vision in the world , 2000, Trends in Cognitive Sciences.
[15] Y. J. Tejwani,et al. Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.
[16] D. Ballard,et al. Task constraints in visual working memory , 1997, Vision Research.
[17] Nuno Vasconcelos,et al. Empirical Bayesian Motion Segmentation , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[18] Gerhard Lakemeyer,et al. Exploring artificial intelligence in the new millennium , 2003 .
[19] William T. Freeman,et al. Learning Low-Level Vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[20] Paolo Napoletano,et al. A Bayesian Approach to Situated Vision , 2005, BVAI.
[21] Tai Sing Lee,et al. Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.