Laser ablation in analytical chemistry.

In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology.

[1]  M. Yebra,et al.  Flow injection determination of copper in mussels by flame atomic absorption spectrometry after on-line continuous ultrasound-assisted extraction , 2002 .

[2]  D. Günther Laser-ablation inductively-coupled plasma mass spectrometry , 2002, Analytical and bioanalytical chemistry.

[3]  Anne-Claire Pottin,et al.  Performance of laser ablation: quadrupole-based ICP-MS coupling for the analysis of single micrometric uranium particles , 2013, Journal of Radioanalytical and Nuclear Chemistry.

[4]  F. Poitrasson,et al.  Near infra red femtosecond laser ablation : the influence of energy and pulse width on the LA-ICP-MS analysis of monazite , 2010 .

[5]  J. Harris,et al.  Growth of epitaxial strontium barium niobate thin films by pulsed laser deposition , 1994 .

[6]  R. Russo,et al.  Rapid bulk analysis using femtosecond laser ablation inductively coupled plasma time-of-flight mass spectrometry , 2012 .

[7]  I. A. Rufini,et al.  Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements , 2011 .

[8]  Kay Niemax,et al.  Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass , 2004 .

[9]  T. Ghislain,et al.  Simultaneous LIBS and LA-ICP-MS analysis of industrial samples , 2006 .

[10]  Bret C. Windom,et al.  Laser ablation—laser induced breakdown spectroscopy (LA-LIBS): A means for overcoming matrix effects leading to improved analyte response , 2009 .

[11]  R. Russo,et al.  Laser wavelength effects in ultrafast near-field laser nanostructuring of Si , 2009, Applied Physics Letters.

[12]  Jae‐Hyun Kim,et al.  Magnetic properties of epitaxially grown semiconducting Zn1−xCoxO thin films by pulsed laser deposition , 2002 .

[13]  G. Mourou,et al.  Self-channeling of high-peak-power femtosecond laser pulses in air. , 1995, Optics letters.

[14]  A. Saint,et al.  Elemental fractionation in the formation of particulates, as observed by simultaneous isotopes measurement using laser ablation ICP-oa-TOFMS , 2003 .

[15]  S. Chin,et al.  Remote time-resolved filament-induced breakdown spectroscopy of biological materials. , 2006, Optics letters.

[16]  P. Mauchien,et al.  Analytical optimization of some parameters of a Laser-Induced Breakdown Spectroscopy experiment☆ , 2008 .

[17]  Leslie M. Collins,et al.  LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals. , 2009 .

[18]  R. Russo,et al.  Effects of crater development on fractionation and signal intensity during laser ablation inductively coupled plasma mass spectrometry , 2000 .

[19]  J. Becker,et al.  Laser ablation inductively coupled plasma mass spectrometry for direct isotope ratio measurements on solid samples , 2005 .

[20]  R. Noll,et al.  Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry , 2001 .

[21]  Stewart Clegg,et al.  Strategies for Mars remote Laser-Induced Breakdown Spectroscopy analysis of sulfur in geological samples , 2011 .

[22]  S. Groh,et al.  Investigation of sample introduction- and plasma-related matrix effects in inductively coupled plasma spectrometry applying single analyte droplet and particle injection , 2012 .

[23]  N. Omenetto,et al.  Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma—Particle Interactions: Still-Challenging Issues within the Analytical Plasma Community , 2010, Applied spectroscopy.

[24]  D. Günther,et al.  Laser ablation-ICP-MS: particle size dependent elemental composition studies on filter-collected and online measured aerosols from glass , 2004 .

[25]  C. Dubuisson,et al.  Bulk analysis by IR laser ablation inductively coupled plasma atomic emission spectrometry , 2000, Fresenius' journal of analytical chemistry.

[26]  P. Sheng,et al.  Analysis of heat-affected zone formation for laser cutting of stainless steel , 1995 .

[27]  R. Russo,et al.  Femtosecond laser ablation: Experimental study of the repetition rate influence on inductively coupled plasma mass spectrometry performance ☆ , 2008 .

[28]  Vincenzo Palleschi,et al.  Comparison between single- and double-pulse LIBS at different air pressures on silicon target , 2006 .

[29]  M. Capitelli,et al.  Modelling of LIBS plasma expansion , 2001 .

[30]  Frank C De Lucia,et al.  Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues. , 2008, Applied optics.

[31]  François Brygo,et al.  Laser-induced breakdown spectroscopy and chemometrics: a novel potential method to analyze wheat grains. , 2010, Journal of agricultural and food chemistry.

[32]  K. Jochum,et al.  Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd : YAG laser and matrix-matched calibration , 2007 .

[33]  Vincenzo Palleschi,et al.  Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches☆ , 2002 .

[34]  D. Günther,et al.  Theoretical description and experimental observation of aerosol transport processes in laser ablation inductively coupled plasma mass spectrometry , 2001 .

[35]  R. Walters,et al.  Laser-induced breakdown spectroscopy (LIBS) – an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis , 2005, Geochemistry: Exploration, Environment, Analysis.

[36]  R. Wirth,et al.  Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon—implications for elemental fractionation during ICP-MS analysis , 2005 .

[37]  See Leang Chin,et al.  Femtosecond Laser Filamentation for Atmospheric Sensing , 2010, Sensors.

[38]  D. Grégoire,et al.  The formation of trace element-enriched particulates during laser ablation of refractory materials , 1996 .

[39]  J.-B. Sirven,et al.  Towards the determination of the geographical origin of yellow cake samples by laser-induced breakdown spectroscopy and chemometrics , 2009 .

[40]  C. Grigoropoulos,et al.  Optical near-field ablation-induced plasma characteristics , 2006 .

[41]  H. Longerich,et al.  Application of a frequency quintupled Nd:YAG source (λ=213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals , 1998 .

[42]  R. Russo,et al.  Study of particle size influence on laser ablation inductively coupled plasma mass spectrometry using an in-line cascade impactor , 2005 .

[43]  Klaus Sokolowski-Tinten,et al.  Generation of dense electron-hole plasmas in silicon , 2000 .

[44]  R. Russo,et al.  Correlation of spectral emission intensity in the inductively coupled plasma and laser-induced plasma during laser ablation of solid samples , 1995 .

[45]  V. Adam,et al.  Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry , 2008 .

[46]  D. Koppenaal,et al.  Laser ablation inductively coupled plasma mass spectrometry , 1998 .

[47]  D. H. Dieke Session 15. Intensities and Transition Probabilities , 1962 .

[48]  Christopher P. McKay,et al.  Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes , 2011 .

[49]  S. Clegg,et al.  Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques , 2009 .

[50]  Roberto Teghil,et al.  Laser Induced Breakdown Spectroscopy methodology for the analysis of copper-based-alloys used in ancient artworks , 2008 .

[51]  R. Russo,et al.  Laser-nanostructure interactions for ion production. , 2012, Physical chemistry chemical physics : PCCP.

[52]  J. Almirall,et al.  Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy , 2010 .

[53]  K. Niemax,et al.  Non-matrix matched calibration using near-IR femtosecond laser ablation inductively coupled plasma optical emission spectrometry , 2005 .

[54]  R. Russo,et al.  Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure , 2007 .

[55]  Yanbei Zhu,et al.  Quantitative analysis of the elements in powder samples by LA-ICP-MS with PMMA powder as the binder and Cs as the internal standard , 2013 .

[56]  Roland Oltra,et al.  Laser fluence, repetition rate and pulse duration effects on paint ablation , 2006 .

[57]  Jin Yu,et al.  Long-distance remote laser-induced breakdown spectroscopy using filamentation in air , 2004 .

[58]  Martin Richardson,et al.  Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy , 2012 .

[59]  R. Russo,et al.  Assessment of the precision and accuracy of thorium (232Th) and uranium (238U) measured by quadrupole based inductively coupled plasma-mass spectrometry using liquid nebulization, nanosecond and femtosecond laser ablation , 2008 .

[60]  R. Russo,et al.  Existence of phase explosion during laser ablation and its effects on inductively coupled plasma-mass spectroscopy. , 2001, Analytical chemistry.

[61]  Martin Richardson,et al.  Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics , 2010 .

[62]  S. Mao,et al.  Influence of preformed shock wave on the development of picosecond laser ablation plasma , 2001 .

[63]  R. Russo,et al.  Guiding and focusing of a nanosecond infrared laser within transient hollow plasma femtosecond filament channels , 2012 .

[64]  Klaus Sokolowski-Tinten,et al.  Ultrafast thermal melting of laser-excited solids by homogeneous nucleation , 2002 .

[65]  R. Kostecki,et al.  Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces , 2012 .

[66]  J. J. Laserna,et al.  New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy , 2011 .

[67]  J. Schoukens,et al.  An improved multiple internal standard normalisation for drift in LA-ICP-MS measurementsPresented at the 2nd International Conference on High-resolution Sector Field ICP-MS, Vienna, Austria, September 12???15, 2001. , 2002 .

[68]  M. A. Baig,et al.  On the Optimization for Enhanced Dual-Pulse Laser-Induced Breakdown Spectroscopy , 2010, IEEE Transactions on Plasma Science.

[69]  Alain Petit,et al.  Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma - basic investigations and analytical results , 1998 .

[70]  M. Hashmi,et al.  Effect of laser welding parameters on the heat input and weld-bead profile , 2005 .

[71]  R. Russo,et al.  Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis , 2010, Analytical and Bioanalytical Chemistry.

[72]  D. Günther,et al.  Peer Reviewed: Laser Ablation-ICPMS , 2003 .

[73]  P. Sylvester,et al.  Accuracy and precision of non-matrix-matched calibration for lead isotope ratio measurements of lead-poor minerals by LA-MC-ICPMS , 2010 .

[74]  Dale L. Perry,et al.  Laser Ablation Molecular Isotopic Spectrometry: Parameter influence on boron isotope measurements , 2011 .

[75]  N. Huot,et al.  Heat affected zone in aluminum single crystals submitted to femtosecond laser irradiations , 2005 .

[76]  R. F. Wood,et al.  Dynamics of plume propagation, splitting, and nanoparticle formation during pulsed-laser ablation , 1998 .

[77]  Salman Rosenwaks,et al.  Identification of organic compounds in ambient air via characteristic emission following laser ablation , 2003 .

[78]  D. Anglos,et al.  Nanosecond and femtosecond Laser Induced Breakdown Spectroscopic analysis of bronze alloys , 2008 .

[79]  R. Russo,et al.  UV-femtosecond and nanosecond laser ablation-ICP-MS: internal and external repeatability , 2006 .

[80]  Xianglei Mao,et al.  Laser ablation in analytical chemistry-a review. , 2002, Talanta.

[81]  F. J. Fortes,et al.  Laser-induced breakdown spectroscopy. , 2013, Analytical chemistry.

[82]  Chase A. Munson,et al.  Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects , 2009, Analytical and bioanalytical chemistry.

[83]  Yong‐Ill Lee,et al.  Recent Applications of Laser‐Induced Breakdown Spectrometry: A Review of Material Approaches , 2004 .

[84]  V. Detalle,et al.  Chemometrics and Laser Induced Breakdown Spectroscopy (LIBS) Analyses for Identification of Wall Paintings Pigments , 2010 .

[85]  N. Furuta,et al.  Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS): Comparison of Different Internal Standardization Methods Using Laser-induced Plasma (LIP) Emission and LA-ICP-MS Signals , 2002, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[86]  Jidong Lu,et al.  Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium , 2012 .

[87]  R. Russo,et al.  Comparison of matrix effects in inductively coupled plasma using laser ablation and solution nebulization for dry and wet plasma conditions , 2001 .

[88]  Jie Zhang,et al.  Tightly focused femtosecond laser pulse in air: from filamentation to breakdown. , 2010, Optics express.

[89]  J J Laserna,et al.  Glow-Discharge-Assisted Laser-Induced Breakdown Spectroscopy: Increased Sensitivity in Solid Analysis , 2008, Applied spectroscopy.

[90]  K. Komvopoulos,et al.  Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy , 2003 .

[91]  M. Obara,et al.  Heat-affected zone and ablation rate of copper ablated with femtosecond laser , 2005 .

[92]  V. Burakov,et al.  Plasma chemistry in laser ablation processes , 2001 .

[93]  C. Grigoropoulos,et al.  Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film , 2007 .

[94]  Lin Li,et al.  Chemical Assisted Laser Machining for The Minimisation of Recast and Heat Affected Zone , 2004 .

[95]  Demetrios Anglos,et al.  Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring. , 2006, Optics letters.

[96]  G. Roy,et al.  Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy , 2007 .

[97]  F. Scheffler,et al.  The influence of true simultaneous internal standardization and background correction on repeatability for laser ablation and the slurry technique coupled to ICP emission spectrometry , 1999 .

[98]  R. K. Marcus,et al.  Femtosecond laser ablation particle introduction to a liquid sampling-atmospheric pressure glow discharge ionization source , 2012 .

[99]  C. Grigoropoulos,et al.  Laser ablation-induced spectral plasma characteristics in optical far-and near fields , 2008 .

[100]  Shreyes N. Melkote,et al.  Characterization and prediction of the heat-affected zone in a laser-assisted mechanical micromachining process , 2008 .

[101]  K. Sokolowski-Tinten,et al.  Laser-solid interaction in the femtosecond time regime , 1997 .

[102]  D. Günther,et al.  Characterizing ablation and aerosol generation during elemental fractionation on absorption modified lithium tetraborate glasses using LA-ICP-MS , 2005, Analytical and bioanalytical chemistry.

[103]  D. Günther,et al.  Fundamental studies on the ablation behaviour of carbon in LA-ICP-MS with respect to the suitability as internal standard , 2012 .

[104]  D. Günther,et al.  Review of the State-of-the-Art of Laser Ablation Inductively Coupled Plasma Mass Spectrometry , 2011, Applied spectroscopy.

[105]  K. Niemax,et al.  Non-matrix matched calibration of major and minor concentrations of Zn and Cu in brass, aluminium and silicate glass using NIR femtosecond laser ablation inductively coupled plasma mass spectrometry , 2006 .

[106]  Jidong Lu,et al.  Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry. , 2013, Analytical chemistry.

[107]  Vincent Detalle,et al.  Laser-induced breakdown spectroscopy for polymer identification , 2011, Analytical and bioanalytical chemistry.

[108]  R. Russo,et al.  Glass particles produced by laser ablation for ICP-MS measurements. , 2007, Talanta.

[109]  Y. Dikmelik,et al.  Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene. , 2008, Optics express.

[110]  D. Günther,et al.  Fundamental studies on the ablation behaviour of Pb/U in NIST 610 and zircon 91500 using laser ablation inductively coupled plasma mass spectrometry with respect to geochronology , 2010 .

[111]  F. Colao,et al.  Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach , 2004 .

[112]  Klaus Sokolowski-Tinten,et al.  The physical mechanisms of short-pulse laser ablation , 2000 .

[113]  I. Padilla,et al.  Study of heterogeneities in steels and determination of soluble and total aluminium and titanium concentration by laser ablation inductively coupled plasma mass spectrometry. , 2007, Talanta.

[114]  R. Russo,et al.  UV-femtosecond laser ablation-ICP-MS for analysis of alloy samples , 2004 .

[115]  José R. Almirall,et al.  Wavelength dependence on the elemental analysis of glass by Laser Induced Breakdown Spectroscopy , 2008 .

[116]  Christopher P. McKay,et al.  Laser Ablation Molecular Isotopic Spectrometry , 2011 .

[117]  G. Dacey Optical Masers in Science and Technology: Advances in the control of light waves give promise of important applications in science and technology. , 1962, Science.

[118]  Xianglei Mao,et al.  The physics of laser ablation in microchemical analysis. , 2002, Analytical chemistry.

[119]  B. Luther-Davies,et al.  Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics , 2002 .

[120]  K. E. Eseller,et al.  Non-intrusive, on-line, simultaneous multi-species impurity monitoring in hydrogen using LIBS , 2011 .

[121]  S. Mao,et al.  Nanosecond and femtosecond laser ablation of brass: particulate and ICPMS measurements. , 2004, Analytical chemistry.

[122]  Nancy J. McMillan,et al.  Laser-induced breakdown spectroscopy analysis of complex silicate minerals—beryl , 2006, Analytical and bioanalytical chemistry.

[123]  J. Winefordner,et al.  Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star , 2004 .

[124]  K. Sokolowski-Tinten,et al.  Timescales in the response of materials to femtosecond laser excitation , 2004 .

[125]  R. Noll,et al.  Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo , 2004 .

[126]  F. Colao,et al.  Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes , 2006, Analytical and bioanalytical chemistry.

[127]  Youzuo Lin,et al.  Epitaxial growth of dielectric CaCu3Ti4O12 thin films on (001) LaAlO3 by pulsed laser deposition , 2002 .

[128]  Mohamad Sabsabi,et al.  Determination of isotope ratios using Laser-Induced Breakdown Spectroscopy in ambient air at atmospheric pressure for nuclear forensics , 2011 .

[129]  Qianli Ma,et al.  Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds , 2011, Analytical and bioanalytical chemistry.

[130]  D. Günther,et al.  A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS , 2003 .

[131]  K. Heilig Die Isotopieverschiebung zwischen den geraden Sr-Isotopen 84,86, 88 und 90 und der Sprungim Kernvolumeneffekt bei der Neutronenzahl 50 , 1961 .

[132]  H. Longerich,et al.  The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM- ICP-MS) in the Earth sciences , 1995 .

[133]  R. Russo,et al.  Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis , 2007 .

[134]  R. Russo,et al.  Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon , 2005 .

[135]  Detlef Günther,et al.  Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles — implications for LA-ICP-MS , 2001 .

[136]  J. Becker,et al.  Studies of LA-ICP-MS on quartz glasses at different wavelengths of a Nd:YAG laser , 2001, Analytical and Bioanalytical Chemistry.

[137]  Kay Niemax,et al.  Elemental fractionation of dielectric aerosols produced by near-infrared femtosecond laser ablation of silicate glasses , 2005 .

[138]  D. Anglos,et al.  Optical emission studies of plasma induced by single and double femtosecond laser pulses , 2009 .

[139]  Detlef Günther,et al.  Comparison of the ablation behaviour of 266 nm Nd:YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis , 1999 .

[140]  S. Mao,et al.  Comparison of 193, 213 and 266 nm laser ablation ICP-MS , 2002 .

[141]  R. Russo,et al.  Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis , 2011 .

[142]  Ian W. Boyd,et al.  Characteristics of high quality ZnO thin films deposited by pulsed laser deposition , 1994 .

[143]  S. Clegg,et al.  Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars , 2010 .

[144]  Qianqian Wang,et al.  Comparison of 1064 nm and 266 nm excitation of laser-induced plasmas for several types of plastics and one explosive ☆ , 2008 .

[145]  S. Mao,et al.  Particle size dependent chemistry from laser ablation of brass. , 2005, Analytical chemistry.

[146]  D. Günther,et al.  Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols. , 2003, Analytical chemistry.

[147]  D. Veirs,et al.  PU-239/PU-240 ISOTOPE RATIOS DETERMINED USING HIGH RESOLUTION EMISSION SPECTROSCOPY IN A LASER INDUCED PLASMA , 2000 .

[148]  Nicoló Omenetto,et al.  Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields , 2012, Applied spectroscopy.

[149]  D. Günther,et al.  Analysis of laser-produced aerosols by inductively coupled plasma mass spectrometry: transport phenomena and elemental fractionation. , 2008, Analytical chemistry.

[150]  R. Gaudiuso,et al.  ns- and fs-LIBS of copper-based-alloys: A different approach , 2007 .

[151]  Alexander A. Serafetinides,et al.  Ultra-short pulsed laser ablation of polymers , 2001 .

[152]  M. Bolshov,et al.  Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-excited atomic fluorescence spectrometry , 1999 .

[153]  R. K. Marcus,et al.  Liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy detection of laser ablation produced particles: A feasibility study☆ , 2012 .

[154]  D. Cremers,et al.  Monitoring Uranium, Hydrogen, and Lithium and Their Isotopes Using a Compact Laser-Induced Breakdown Spectroscopy (LIBS) Probe and High-Resolution Spectrometer , 2012, Applied spectroscopy.

[155]  R. Russo,et al.  Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon , 1999 .

[156]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[157]  Mohamed Chaker,et al.  Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys , 2001 .