Wideband and multiband CMOS LNAs: State-of-the-art and future prospects

The realization of Software Defined Radio (SDR) requires flexible RF front-end to accommodate multiple standards in different frequency bands. In this review paper, we survey the literature over the period 1995-2011 and discuss the state-of-the-art multiband and wideband LNAs in context of different receiver architectures suitable for SDR. Wideband and multiband LNA designs reported in open literature are categorized on the basis of their circuit architecture. Measured results of the sample LNA designs from each category are tabulated and discussed with emphasis on power consumption, NF, gain, linearity, and impedance matching tradeoffs. We have also discussed our own three wideband inductorless LNA design prototypes which are manufactured in 0.13?m and 90nm CMOS. This review infers that future LNAs suitable for SDR must be highly linear and scalable with future technology nodes.

[1]  Enrico Mach,et al.  FOR LOW POWER , 1997 .

[2]  P. Baltus,et al.  A 1.2 V, Inductorless, Broadband LNA in 90 nm CMOS LP , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[3]  L. Roy,et al.  A CMOS ultra-wideband LNA utilizing a frequency-controlled feedback technique , 2005, 2005 IEEE International Conference on Ultra-Wideband.

[4]  S. Kiaei,et al.  A pseudo-concurrent 0.18 /spl mu/m multi-band CMOS LNA , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[5]  Liang-Hung Lu,et al.  Design of Ultra-Low-Voltage RF Frontends With Complementary Current-Reused Architectures , 2007, IEEE Transactions on Microwave Theory and Techniques.

[6]  Walter H. Ku,et al.  An integrated CMOS distributed amplifier utilizing packaging inductance , 1997 .

[7]  Jiang Zhu,et al.  A Compact Transmission-Line Metamaterial Antenna With Extended Bandwidth , 2009, IEEE Antennas and Wireless Propagation Letters.

[8]  B. Razavi,et al.  A 900 MHz/1.8 GHz CMOS receiver for dual band applications , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[9]  Yo-Sheng Lin,et al.  Analysis and Design of a 1.6–28-GHz Compact Wideband LNA in 90-nm CMOS Using a $ \pi $-Match Input Network , 2010, IEEE Transactions on Microwave Theory and Techniques.

[10]  Kuo-Liang Deng,et al.  A 0.6-22-GHz broadband CMOS distributed amplifier , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[11]  D. Belot,et al.  A Concurrent Fully-Integrated LNA for W-LAN IEEE 802.11b/g/a Applications , 2006, 2006 European Microwave Conference.

[12]  Yeo Kiat Seng,et al.  A 3–8 GHz Low-Noise CMOS Amplifier , 2009, IEEE Microwave and Wireless Components Letters.

[13]  Shen-Iuan Liu,et al.  A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers , 2007, IEEE Journal of Solid-State Circuits.

[14]  Lawrence E. Larson,et al.  Silicon technology tradeoffs for radio-frequency/mixed-signal (quote)systems-on-a-chip(quote) , 2003 .

[15]  Asad A. Abidi,et al.  A 2.4 GHz low-IF receiver for wideband WLAN in 0.6μm CMOS , 2000 .

[16]  A. Abidi,et al.  Large suspended inductors on silicon and their use in a 2- mu m CMOS RF amplifier , 1993, IEEE Electron Device Letters.

[17]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[18]  Michiel Steyaert,et al.  A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology , 1995, IEEE J. Solid State Circuits.

[19]  Mikko Valkama,et al.  Signal processing challenges for applying software radio principles in future wireless terminals: an overview , 2002, Int. J. Commun. Syst..

[20]  K. Halonen,et al.  A dual-band RF front-end for WCDMA and GSM applications , 2001 .

[21]  Jusung Kim,et al.  Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback With Simultaneous Noise, Gain, and Bandwidth Optimization , 2010, IEEE Transactions on Microwave Theory and Techniques.

[22]  Chang Su Kim,et al.  65 Nm CMOS 기술에서 소자 종류에 따른 신뢰성 특성 분석 , 2014 .

[23]  J. Jacob Wikner,et al.  Power consumption of analog circuits: a tutorial , 2010 .

[24]  E. Zeisel,et al.  A highly-integrated tri-band/quad-mode SiGe BiCMOS RF-to-baseband receiver for wireless CDMA/WCDMA/AMPS applications with GPS capability , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[25]  Qamar Ul Wahab,et al.  Figure of merit for narrowband, wideband and multiband LNAs , 2012 .

[26]  G. Huang,et al.  A SiGe low noise amplifier for 2.4/5.2/5.7 GHz WLAN applications , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[27]  Ken Leong Fong,et al.  Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications , 1999 .

[28]  Michiel Steyaert,et al.  Cmos Wireless Transceiver Design , 2015 .

[29]  N. A. Moseley,et al.  Digitally Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference , 2009, IEEE Journal of Solid-State Circuits.

[30]  Mourad N. El-Gamal,et al.  Design Techniques of CMOS Ultra-Wide-Band Amplifiers for Multistandard Communications , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[31]  Yuanjin Zheng,et al.  A Multi-band CMOS Low Noise Amplifier for Multi-standard Wireless Receivers , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[32]  Kuo-Hua Cheng,et al.  Design of a fully integrated high linearity dual-band CMOS LNA , 2003, 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003.

[33]  Omid Shoaei,et al.  A New IIP2 Enhancement Technique for CMOS Down-Converter Mixers , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[34]  Ronan Farrell,et al.  Reconfigurable multiband multimode LNA for LTE/GSM, WiMAX, and IEEE 802.11.a/b/g/n , 2010, 2010 17th IEEE International Conference on Electronics, Circuits and Systems.

[35]  Mohamed I. Elmasry,et al.  A Low-Noise CMOS Distributed Amplifier for Ultra-Wide-Band Applications , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[36]  Po-Yu Chang,et al.  A Compact 0.1–14-GHz Ultra-Wideband Low-Noise Amplifier in 0.13-$\mu{\hbox{m}}$ CMOS , 2010, IEEE Transactions on Microwave Theory and Techniques.

[37]  C.D. Hull,et al.  A direct-conversion receiver for 900 MHz (ISM band) spread-spectrum digital cordless telephone , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[38]  David Renshaw,et al.  European Solid-State Circuits Conference (ESSCIRC) , 1987 .

[39]  Joseph Mitola,et al.  The software radio architecture , 1995, IEEE Commun. Mag..

[40]  J. Laskar,et al.  Theoretical Analysis of a Low Dispersion SiGe LNA for Ultra-Wideband Applications , 2006, IEEE Microwave and Wireless Components Letters.

[41]  Christer Svensson,et al.  The blocker challenge when implementing software defined radio receiver RF frontends , 2010 .

[42]  Sambit Datta,et al.  Pseudo Concurrent Quad-Band LNA Operating in 900 MHz/1.8 GHz and 900 MHz/2.4 GHz Bands for Multi-standard Wireless Receiver , 2010, 2010 International Conference on Advances in Recent Technologies in Communication and Computing.

[43]  Rashad Ramzan,et al.  Flexible Wireless Receivers: On-Chip Testing Techniques and Design for Testability , 2009 .

[44]  Tamal Mukherjee,et al.  MEMS varactor enabled frequency-reconfigurable LNA and PA in the upper UHF band , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[45]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[46]  Won Namgoong,et al.  Wide-band CMOS cascode low-noise amplifier design based on source degeneration topology , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[47]  Sungyong Jung,et al.  Design of CMOS UWB low noise amplifier with cascode feedback , 2004, The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04..

[48]  Baohong Cheng,et al.  A single-chip dual-band direct-conversion IEEE 802.11a/b/g WLAN transceiver in 0.18-/spl mu/m CMOS , 2005, IEEE Journal of Solid-State Circuits.

[49]  Kamran Entesari,et al.  A 2–1100 MHz wideband low noise amplifier with 1.43 dB minimum noise figure , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[50]  R. Gharpurey A broadband low-noise front-end amplifier for ultra wideband in 0.13-/spl mu/m CMOS , 2004, IEEE Journal of Solid-State Circuits.

[51]  Christer Svensson,et al.  A 0.5-6 GHz Low Gain RF Front-End for Low-IF Over-Sampling Receivers in 90nm CMOS , 2009 .

[52]  H.-J. Lee,et al.  A 3 to 5GHz CMOS UWB LNA with input matching using miller effect , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[53]  Minjae Lee,et al.  An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.

[54]  T.K.K. Tsang,et al.  Gain controllable very low voltage (/spl les/ 1 V) 8-9 GHz integrated CMOS LNAs , 2002, 2002 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Papers (Cat. No.02CH37280).

[55]  J. L. Tham,et al.  A 2.7 V 900 MHz/1.9 GHz dual-band transceiver IC for digital wireless communication , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[56]  A.A. Abidi,et al.  The Path to the Software-Defined Radio Receiver , 2007, IEEE Journal of Solid-State Circuits.

[57]  Yang Lu,et al.  A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra-wide-band wireless receivers , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[58]  Rahul Magoon,et al.  A 2.7-V 900-MHz/1.9-GHz dual-band transceiver IC for digital wireless communication , 1999 .

[59]  Yehia Massoud,et al.  On the design of customizable low-voltage common-gate LNA-mixer pair using current and charge reusing techniques , 2008, GLSVLSI '08.

[60]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[61]  Giuseppe Palmisano,et al.  A 3–10-GHz Low-Power CMOS Low-Noise Amplifier for Ultra-Wideband Communication , 2011, IEEE Transactions on Microwave Theory and Techniques.

[62]  C. Nguyen,et al.  Integrated Multilayered On-Chip Inductors for Compact CMOS RFICs and Their Use in a Miniature Distributed Low-Noise-Amplifier Design for Ultra-Wideband Applications , 2008, IEEE Transactions on Microwave Theory and Techniques.

[63]  H. Hashemi,et al.  Concurrent dual-band CMOS low noise amplifiers and receiver architectures , 2001, 2001 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.01CH37185).

[64]  Heng Zhang,et al.  A Low-Power, Linearized, Ultra-Wideband LNA Design Technique , 2009, IEEE Journal of Solid-State Circuits.

[65]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[66]  Jaehoon Choi,et al.  Ultra-wideband low noise amplifier using a cascode feedback topology , 2006, Digest of Papers. 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[67]  D.J. Allstot,et al.  A fully integrated 0.5-5.5 GHz CMOS distributed amplifier , 2000, IEEE Journal of Solid-State Circuits.

[68]  Arthur Nieuwoudt,et al.  Numerical Design Optimization Methodology for Wideband and Multi-Band Inductively Degenerated Cascode CMOS Low Noise Amplifiers , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[69]  Thomas H. Lee The Design of CMOS Radio-Frequency Integrated Circuits , 1998 .

[70]  K. Entesari,et al.  A CMOS Low-Noise Amplifier With Reconfigurable Input Matching Network , 2009, IEEE Transactions on Microwave Theory and Techniques.

[71]  B. Nauta,et al.  An inductorless wideband balun-LNA in 65nm CMOS with balanced output , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.

[72]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.

[73]  Ashudeb Dutta,et al.  PSO-based output matching network for concurrent dual-band LNA , 2010, 2010 International Conference on Microwave and Millimeter Wave Technology.

[74]  Edgar Sánchez-Sinencio,et al.  An Inductor-Less Noise-Cancelling Broadband Low Noise Amplifier With Composite Transistor Pair in 90 nm CMOS Technology , 2011, IEEE Journal of Solid-State Circuits.

[75]  E. Hegazi,et al.  A 90-nm Wideband Merged CMOS LNA and Mixer Exploiting Noise Cancellation , 2007, IEEE Journal of Solid-State Circuits.

[76]  Shen-Iuan Liu,et al.  A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receiver , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[77]  John R. Long,et al.  A 1V Transformer-Feedback Low-Noise Amplifier for 5-GHz Wireless LAN in 0 . 18-m CMOS , 2001 .

[78]  Guo-Wei Huang,et al.  Reconfigurable SiGe Low-Noise Amplifiers With Variable Miller Capacitance , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[79]  Kartikeya Mayaram,et al.  A 250 mV, 352 $\mu$W GPS Receiver RF Front-End in 130 nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[80]  Ali M. Niknejad,et al.  A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation , 2007, IEEE Journal of Solid-State Circuits.

[81]  Jiann-Jong Chen,et al.  A differential multi-band CMOS low noise amplifier with noise cancellation and interference rejection , 2010 .

[83]  D. J. Cassan,et al.  A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS , 2003, IEEE J. Solid State Circuits.

[84]  G. H. Zare Fatin,et al.  A technique for improving gain and noise figure of common-gate wideband LNAs , 2010 .

[85]  Chun-Lin Ko,et al.  A 2.4 to 5.4 GHz Low Power CMOS Reconfigurable LNA for Multistandard Wireless Receiver , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[86]  Asad A. Abidi,et al.  A merged CMOS LNA and mixer for a WCDMA receiver , 2003 .

[87]  A. Neviani,et al.  A fully integrated differential CMOS LNA for 3-5-GHz ultrawideband wireless receivers , 2006, IEEE Microwave and Wireless Components Letters.

[88]  Liang-Hung Lu,et al.  A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier , 2005, IEEE Microwave and Wireless Components Letters.

[89]  Jussi Ryynanen,et al.  A 2-GHz wide-band direct conversion receiver for WCDMA applications , 1999, IEEE J. Solid State Circuits.

[90]  Hsuan-Ling Kao,et al.  Very low-power CMOS LNA for UWB wireless receivers using current-reused topology , 2008 .

[91]  Kuo-Liang Deng,et al.  A 0.5-14-GHz 10.6-dB CMOS cascode distributed amplifier , 2003, 2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408).

[92]  Behzad Razavi Design Considerations for Future RF Circuits , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[93]  F. Zhang,et al.  Low-power programmable gain CMOS distributed LNA , 2006, IEEE Journal of Solid-State Circuits.

[94]  Yo-Sheng Lin,et al.  A 2.5-dB NF 3.1–10.6-GHz CMOS UWB LNA with small group-delay-variation , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[95]  G. Roientan Lahiji,et al.  Low power and high gain current reuse LNA with modified input matching and inter-stage inductors , 2008, Microelectron. J..

[96]  A. Haghighat A review on essentials and technical challenges of software defined radio , 2002, MILCOM 2002. Proceedings.

[97]  J.R. Long,et al.  A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 $\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[98]  J. Laskar,et al.  Resistive-Feedback CMOS Low-Noise Amplifiers for Multiband Applications , 2008, IEEE Transactions on Microwave Theory and Techniques.

[99]  Guo-Wei Huang,et al.  Analysis and Design of a CMOS UWB LNA With Dual-$RLC$-Branch Wideband Input Matching Network , 2010, IEEE Transactions on Microwave Theory and Techniques.

[100]  E. Rosenbaum,et al.  An ESD-protected, 2.45/5.25-GHz dual-band CMOS LNA with series LC loads and a 0.5-V supply , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[101]  A. Molnar,et al.  A single-chip quad-band (850/900/1800/1900 MHz) direct-conversion GSM/GPRS RF transceiver with integrated VCOs and fractional-N synthesizer , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[102]  A. A. Abidi,et al.  General relations between IP2, IP3, and offsets in differential circuits and the effects of feedback , 2003 .

[103]  P. Wambacq,et al.  A switchable low-area 2.4-and-5 GHz dual-band LNA in digital CMOS , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.

[104]  R.B. Staszewski,et al.  The First Fully Integrated Quad-Band GSM/GPRS Receiver in a 90-nm Digital CMOS Process , 2006, IEEE Journal of Solid-State Circuits.

[105]  Jenn-Hwan Tarng,et al.  Parallel-RC Feedback Low-Noise Amplifier for UWB Applications , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[106]  A. Ismail,et al.  A 3.1 to 8.2 GHz direct conversion receiver for MB-OFDM UWB communications , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[107]  David J. Allstot,et al.  A capacitor cross-coupled common-gate low-noise amplifier , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[108]  P. Wambacq,et al.  A Fully Integrated 7.3 kV HBM ESD-Protected Transformer-Based 4.5–6 GHz CMOS LNA , 2009, IEEE Journal of Solid-State Circuits.

[109]  B. Nauta,et al.  A wideband high-linearity RF receiver front-end in CMOS , 2004, Proceedings of the 30th European Solid-State Circuits Conference.

[110]  Hossein Hashemi,et al.  Concurrent multiband low-noise amplifiers-theory, design, and applications , 2002 .

[111]  B. Nauta,et al.  The Blixer, a Wideband Balun-LNA-I/Q-Mixer Topology , 2008, IEEE Journal of Solid-State Circuits.

[112]  C.F. Jou,et al.  Design of a 3.1-10.6GHz low-voltage, low-power CMOS low-noise amplifier for ultra-wideband receivers , 2005, 2005 Asia-Pacific Microwave Conference Proceedings.

[113]  A.A. Abidi,et al.  A 3.1- to 8.2-GHz zero-IF receiver and direct frequency synthesizer in 0.18-/spl mu/m SiGe BiCMOS for mode-2 MB-OFDM UWB communication , 2005, IEEE Journal of Solid-State Circuits.

[114]  K. O. Kenneth,et al.  A dual-band CMOS front-end with two gain modes for wireless LAN applications , 2004, IEEE Journal of Solid-State Circuits.

[115]  K. Dufrene,et al.  A Multimode Receiver Front-end for Software Defined Radio , 2006, 2006 European Conference on Wireless Technology.

[116]  E. Klumperink,et al.  Noise cancelling in wideband CMOS LNAs , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[117]  Antonio Liscidini,et al.  A 0.13 /spl mu/m CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier , 2006, IEEE Journal of Solid-State Circuits.

[118]  M. Zargari,et al.  A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g WLAN , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[119]  Jean-Baptiste Begueret,et al.  Concurrent Dual-Band Low Noise Amplifier for 802.11a/g WLAN applications , 2006, 2006 13th IEEE International Conference on Electronics, Circuits and Systems.

[120]  Sang-Gug Lee,et al.  A 2.7 to 9.3 GHz CMOS wideband amplifier combined with high pass filter for UWB system , 2005, The 7th International Conference on Advanced Communication Technology, 2005, ICACT 2005..

[121]  P. Heydari,et al.  Design of CMOS distributed circuits for multiband UWB wireless receivers [LNA and mixer] , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[122]  F. Gianesello,et al.  65 nm RFCMOS technologies with bulk and HR SOI substrate for millimeter wave passives and circuits characterized up to 220 GHZ , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[123]  Yeo Kiat Seng,et al.  An Integrated SiGe Dual-band Low Noise Amplifier for Bluetooth, HiperLAN and Wireless LAN Applications , 2003, 2003 33rd European Microwave Conference, 2003.

[124]  D. Manstretta A broadband low-noise single-ended input differential output amplifier with IM2 cancelling , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[125]  J. Chiu,et al.  A noise cancellation technique in active RF-CMOS mixers , 2005, IEEE Journal of Solid-State Circuits.

[126]  D. J. Allstot,et al.  A fully integrated 0.5-5.5 GHz CMOS distributed amplifier , 2000 .

[127]  Jiann-Jong Chen,et al.  A new CMOS wideband low noise amplifier with gain control , 2011, Integr..

[128]  Arthur H. M. van Roermund,et al.  A broadband, inductorless LNA for multi-standard aplications , 2007, 2007 18th European Conference on Circuit Theory and Design.

[129]  Christer Svensson,et al.  A 1.1 V 6.2 mW, wideband RF front-end for 0 dBm blocker tolerant receivers in 90 nm CMOS , 2012 .

[130]  H.-R. Chuang,et al.  A 40~900MHz Broadband CMOS Differential LNA with Gain-Control for DTV RF Tuner , 2005, 2005 IEEE Asian Solid-State Circuits Conference.

[131]  Ling-Miao Chou,et al.  A dual-band direct-conversion/VLIF transceiver for 50GSM/GSM/DCS/PCS , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[132]  Won Namgoong,et al.  Wideband CMOS Low Noise Amplifier Design Based On Source Degeneration Topology , 2003 .

[133]  A. Gummalla,et al.  Compact dual-band planar metamaterial antenna arrays for wireless LAN , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[134]  Behzad Razavi,et al.  A single-chip dual-band direct-conversion IEEE 802.11a/b/g WLAN transceiver in 0.18-μm CMOS , 2005 .

[135]  M. Zargari,et al.  A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g wireless LAN , 2004, IEEE Journal of Solid-State Circuits.

[136]  Chris Toumazou,et al.  Trade-Offs in Analog Circuit Design , 2002 .

[137]  D.M.W. Leenaerts,et al.  An interference-robust receiver for ultra-wideband radio in SiGe BiCMOS technology , 2005, IEEE Journal of Solid-State Circuits.

[138]  George S. Moschytz,et al.  Trade-offs in analog circuit design : the designer's companion , 2002 .

[139]  Laurent Fesquet,et al.  IEEE European Solid-State Circuits Conference (ESSCIRC) , 2005 .

[140]  Payam Heydari,et al.  A Multiband Inductor-Reuse CMOS Low-Noise Amplifier , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[141]  Yu-Jiu Wang,et al.  A compact low-noise weighted distributed amplifier in CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[142]  F. Svelto,et al.  Toward multistandard mobile terminals - fully integrated receivers requirements and architectures , 2005, IEEE Transactions on Microwave Theory and Techniques.

[143]  L. Serrano,et al.  An IP2 Improvement Technique for Zero-IF Down-Converters , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[144]  Joy Laskar,et al.  A 3.6mW differential common-gate CMOS LNA with positive-negative feedback , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[145]  Sang-Gug Lee,et al.  An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system , 2005 .

[146]  Shahriar Mirabbasi,et al.  Classical and modern receiver architectures , 2000, IEEE Commun. Mag..

[147]  Michiel Steyaert,et al.  Power efficient distributed low-noise amplifier in 90 nm CMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[148]  Behzad Razavi,et al.  Design considerations for direct-conversion receivers , 1997 .

[149]  Ralf Wunderlich,et al.  A Variable Gain Multiband Shunt Feedback LNA for LTE , 2010, 2010 17th IEEE International Conference on Electronics, Circuits and Systems.

[150]  Eleni-Sotiria Kytonaki,et al.  Design of a Low Voltage-Low Power 3.1–10.6 GHz UWB RF Front-End in a CMOS 65 nm Technology , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[151]  Zhiwei Xu,et al.  A compact dual-band direct-conversion CMOS transceiver for 802.11a/b/g WLAN , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[152]  Lawrence E. Larson Integrated circuit technology options for RFICs-present status and future directions , 1998 .

[153]  Eric Hanssen,et al.  Fully-integrated DECT/Bluetooth multi-band LNA in 0.18 /spl mu/m CMOS , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[154]  Eric A. M. Klumperink,et al.  A 300–800 MHz Tunable Filter and Linearized LNA Applied in a Low-Noise Harmonic-Rejection RF-Sampling Receiver , 2010, IEEE Journal of Solid-State Circuits.

[155]  Michiel Steyaert,et al.  Low-IF topologies for high-performance analog front ends of fully integrated receivers , 1998 .

[156]  D. G. Tucker,et al.  The history of the homodyne and synchrodyne , 1954 .

[157]  A.A. Abidi,et al.  A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network , 2004, IEEE Journal of Solid-State Circuits.

[158]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[159]  P. Heydari,et al.  Design and Analysis of a Performance-Optimized CMOS UWB Distributed LNA , 2007, IEEE Journal of Solid-State Circuits.

[160]  Sorin P. Voinigescu,et al.  65-nm CMOS, W-Band Receivers for Imaging Applications , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[161]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[162]  Jin-Su Ko,et al.  A single-chip quad-band GSM/GPRS transceiver in 0.18 /spl mu/m standard CMOS , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[163]  Yichuang Sun,et al.  Wireless communication circuits and systems , 2004 .

[164]  Mehmet Parlak,et al.  A Low-Power Dual-Channel Distributed Amplifier for Multielement Receivers , 2011, IEEE Transactions on Microwave Theory and Techniques.

[165]  Ranjit Gharpurey A broadband low-noise front-end amplifier for ultra wideband in 0.13 μm CMOS , 2004, CICC.

[166]  A. Abidi Direct-conversion radio transceivers for digital communications , 1995, Proceedings ISSCC '95 - International Solid-State Circuits Conference.

[167]  A. Bevilacqua,et al.  An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[168]  Yueh-Hua Yu,et al.  High PSR Low Drop-Out Regulator With Feed-Forward Ripple Cancellation Technique , 2010, IEEE Journal of Solid-State Circuits.

[169]  Liang-Hung Lu,et al.  A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier , 2005 .

[170]  Yves Rolain,et al.  A 0.045mm2 0.1–6GHz reconfigurable multi-band, multi-gain LNA for SDR , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.