Assessing the influence of spectral band configuration on automated radiative transfer model inversion
暂无分享,去创建一个
Michael E. Schaepman | Andreas Müller | Wouter Dorigo | Wolfgang Wagner | Thomas Schneider | R. Richter | M. Schaepman | R. Richter | W. Wagner | W. Dorigo | A. Müller | T. Schneider
[1] F. Baret,et al. PROSPECT: A model of leaf optical properties spectra , 1990 .
[2] F. Baret,et al. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .
[3] F. Baret,et al. Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems , 1996 .
[4] S. Running,et al. MODIS Leaf Area Index (LAI) And Fraction Of Photosynthetically Active Radiation Absorbed By Vegetation (FPAR) Product , 1999 .
[5] Yuri Knyazikhin,et al. Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .
[6] Michael E. Schaepman,et al. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling , 2007, Int. J. Appl. Earth Obs. Geoinformation.
[7] W. Verhoef,et al. A Bayesian optimisation approach for model inversion of hyperspectral - multidirectional observations : the balance with A Priori information , 2007 .
[8] W. Verhoef. Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .
[9] S. Tarantola,et al. Detecting vegetation leaf water content using reflectance in the optical domain , 2001 .
[10] Frédéric Baret,et al. RETRIEVING CANOPY VARIABLES BY RADIATIVE TRANSFER MODEL INVERSION - AN AUTOMATED REGIONAL APPROACH FOR IMAGING SPECTROMETER DATA , 2007 .
[11] T. Faurtyot. Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study , 1997 .