Categorical quantum dynamics
暂无分享,去创建一个
[1] Aleks Kissinger,et al. Can quantum theory be characterized in information-theoretic terms? , 2016, ArXiv.
[2] Chris Heunen,et al. Pictures of complete positivity in arbitrary dimension , 2011, Inf. Comput..
[3] W. Beckner. Inequalities in Fourier analysis , 1975 .
[4] Jamie Vicary,et al. Tight Reference Frame-Independent Quantum Teleportation , 2016, QPL.
[5] Samson Abramsky,et al. An Operational Interpretation of Negative Probabilities and No-Signalling Models , 2014, Horizons of the Mind.
[6] Prakash Panangaden,et al. Classifying all mutually unbiased bases in Rel , 2009, 0909.4453.
[7] Dominic Horsman,et al. Quantum picturalism for topological cluster-state computing , 2011, 1101.4722.
[9] Damian Markham,et al. Quantum protocols within Spekkens' toy model , 2016, 1608.09012.
[10] B. Coecke,et al. Classical and quantum structuralism , 2009, 0904.1997.
[11] Peter Selinger,et al. Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.
[12] Ralph Kopperman,et al. All topologies come from generalized metrics , 1988 .
[13] Samson Abramsky,et al. Operational theories and Categorical quantum mechanics , 2012, 1206.0921.
[14] Ross Street,et al. Traced monoidal categories , 1996 .
[15] Ravishankar Ramanathan,et al. No Quantum Realization of Extremal No-Signaling Boxes. , 2014, Physical review letters.
[16] J. Neumann. Proof of the Quasi-Ergodic Hypothesis. , 1932, Proceedings of the National Academy of Sciences of the United States of America.
[18] Umesh V. Vazirani,et al. Quantum Complexity Theory , 1997, SIAM J. Comput..
[19] Aleks Kissinger,et al. Categorical Quantum Mechanics I: Causal Quantum Processes , 2015, 1510.05468.
[20] Vladimir Zamdzhiev,et al. The ZX calculus is incomplete for quantum mechanics , 2014, QPL.
[21] Bill Edwards,et al. Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.
[22] Chris Heunen,et al. Axiomatizing complete positivity , 2015, ArXiv.
[23] Samson Abramsky,et al. H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics , 2010, 1011.6123.
[24] Jonathan Barrett. Information processing in generalized probabilistic theories , 2005 .
[25] A. Yu. Khrennikov. p-Adic probability theory and its applications. The principle of statistical stabilization of frequencies , 1993 .
[26] Jamie Vicary. Higher Semantics of Quantum Protocols , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.
[27] B. Coecke,et al. Spekkens's toy theory as a category of processes , 2011, 1108.1978.
[28] Eugenio Moggi,et al. Notions of Computation and Monads , 1991, Inf. Comput..
[29] W. Ambrose. Structure theorems for a special class of Banach algebras , 1945 .
[30] M. Stone,et al. Linear Transformations in Hilbert Space: III. Operational Methods and Group Theory. , 1930, Proceedings of the National Academy of Sciences of the United States of America.
[31] Van Nostrand,et al. Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .
[32] Lorenzo Catani,et al. Spekkens’ toy model in all dimensions and its relationship with stabiliser quantum mechanics , 2017, 1701.07801.
[33] Jan Hilgevoord,et al. Time in quantum mechanics: a story of confusion , 2005 .
[34] John C. Baez,et al. Physics, Topology, Logic and Computation: A Rosetta Stone , 2009, 0903.0340.
[35] V. Maslov. On a new principle of superposition for optimization problems , 1987 .
[36] J. Baez. Division Algebras and Quantum Theory , 2011, 1101.5690.
[37] Samson Abramsky,et al. Relational Hidden Variables and Non-Locality , 2010, Studia Logica.
[38] S. Woronowicz,et al. Compact matrix pseudogroups , 1987 .
[39] R. Spekkens. Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.
[40] Adrian Kent,et al. No signaling and quantum key distribution. , 2004, Physical review letters.
[41] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.
[42] B. Hall. Quantum Theory for Mathematicians , 2013 .
[43] J. Neumann. Die Eindeutigkeit der Schrödingerschen Operatoren , 1931 .
[44] Stefano Gogioso,et al. Mermin Non-Locality in Abstract Process Theories , 2015 .
[45] Martin Rötteler,et al. Limitations of quantum coset states for graph isomorphism , 2006, STOC '06.
[46] Imre Simon,et al. Recognizable Sets with Multiplicities in the Tropical Semiring , 1988, MFCS.
[47] E. Thiran,et al. Quantum mechanics on p-adic fields , 1989 .
[48] Clifford,et al. Preliminary Sketch of Biquaternions , 1871 .
[49] Miriam Backens,et al. A Complete Graphical Calculus for Spekkens’ Toy Bit Theory , 2014, 1411.1618.
[50] Thomas Pashby,et al. Time and Quantum Theory: A History and A Prospectus , 2015 .
[51] N. Reshetikhin,et al. Quantum Groups , 1993, hep-th/9311069.
[52] R. Feynman. Simulating physics with computers , 1999 .
[53] J. Pin. Tropical Semirings Jean-Eric Pin , 2005 .
[54] Steven J. Vickers,et al. Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.
[55] Stephen J. Garland,et al. Algorithm 97: Shortest path , 1962, Commun. ACM.
[56] Ross Duncan,et al. A graphical approach to measurement-based quantum computing , 2012, Quantum Physics and Linguistics.
[57] Dagomir Kaszlikowski,et al. Greenberger-Horne-Zeilinger paradoxes for N N -dimensional systems , 2002 .
[58] J. Baez,et al. Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.
[59] Aleks Kissinger,et al. Categories of quantum and classical channels , 2016, Quantum Inf. Process..
[60] Niel de Beaudrap. On computation with 'probabilities' modulo k , 2014, 1405.7381.
[61] Masanao Ozawa,et al. Unitary representations of the hyperfinite Heisenberg group and the logical extension methods in physics , 1993 .
[62] V. Buzek,et al. Quantum secret sharing , 1998, quant-ph/9806063.
[63] Bas Spitters,et al. Mathematical Physics A Topos for Algebraic Quantum Theory , 2009 .
[64] Simon Perdrix,et al. Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.
[65] Samson Abramsky,et al. The sheaf-theoretic structure of non-locality and contextuality , 2011, 1102.0264.
[66] Grigory Mikhalkin,et al. Amoebas of Algebraic Varieties and Tropical Geometry , 2004, math/0403015.
[67] A. Kock. Strong functors and monoidal monads , 1972 .
[68] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[69] Alexander Russell,et al. Normal subgroup reconstruction and quantum computation using group representations , 2000, STOC '00.
[70] L. Hardy. Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.
[71] Aleks Kissinger,et al. Picturing Quantum Processes by Bob Coecke , 2017 .
[72] Bob Coecke,et al. The logic of quantum mechanics - Take II , 2012, ArXiv.
[73] Stefano Pironio,et al. Greenberger-Horne-Zeilinger paradoxes for many qudits. , 2002, Physical review letters.
[74] A. Joyal,et al. The geometry of tensor calculus, I , 1991 .
[75] Kohei Kishida,et al. Contextuality, Cohomology and Paradox , 2015, CSL.
[76] J. Neumann,et al. On an Algebraic generalization of the quantum mechanical formalism , 1934 .
[77] Chris Heunen,et al. Entangled and sequential quantum protocols with dephasing. , 2011, Physical review letters.
[78] Jamie Vicary,et al. Abstract structure of unitary oracles for quantum algorithms , 2014, QPL.
[79] G. M. Kelly,et al. Coherence for compact closed categories , 1980 .
[80] Igor Volovich,et al. p-adic quantum mechanics , 1989 .
[81] Ralph Kopperman,et al. Continuity Spaces: Reconciling Domains and Metric Spaces , 1997, Theor. Comput. Sci..
[82] Amar Hadzihasanovic,et al. A Diagrammatic Axiomatisation for Qubit Entanglement , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.
[83] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .
[84] Dusko Pavlovic,et al. Quantum measurements without sums , 2007 .
[85] D. Kaszlikowski,et al. GREENBERGER-HORNE-ZEILINGER PARADOXES WITH SYMMETRIC MULTIPORT BEAM SPLITTERS , 1999, quant-ph/9911039.
[86] Jeremy Butterfield,et al. On Time in Quantum Physics , 2013, 1406.4745.
[87] Xiao Yuan,et al. Bridging the gap between general probabilistic theories and the device-independent framework for nonlocality and contextuality , 2015, Inf. Comput..
[88] H. Araki. A Characterization of the State Space of Quantum Mechanics , 1980 .
[89] Alexander Wilce. A Royal Road to Quantum Theory (or Thereabouts), Extended Abstract. , 2016 .
[90] S. Gogioso. Fantastic Quantum Theories and Where to Find Them , 2017, 1703.10576.
[91] Stefano Gogioso,et al. Categorical Probabilistic Theories , 2017, QPL.
[92] Benjamin Schumacher,et al. Modal Quantum Theory , 2010, 1204.0701.
[93] John E. Roberts,et al. A new duality theory for compact groups , 1989 .
[94] Marek Żukowski,et al. 53 26 v 3 [ qu an tph ] 7 O ct 2 01 3 Greenberger-Horne-Zeilinger theorem for N qudits , 2013 .
[95] Miriam Backens,et al. The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.
[96] A. Yu. Khrennikov,et al. p‐adic quantum mechanics with p‐adic valued functions , 1991 .
[97] Dusko Pavlovic,et al. A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.
[98] I. Bialynicki-Birula,et al. Uncertainty relations for information entropy in wave mechanics , 1975 .
[99] S. Gogioso. Categorical Semantics for Schr\"odinger's Equation , 2015, 1501.06489.
[100] Aleks Kissinger,et al. Quantomatic: A proof assistant for diagrammatic reasoning , 2015, CADE.
[101] T.N.Palmer. $p$-adic Distance, Finite Precision and Emergent Superdeterminism: A Number-Theoretic Consistent-Histories Approach to Local Quantum Realism , 2016, 1609.08148.
[102] Stefano Gogioso,et al. Infinite-dimensional Categorical Quantum Mechanics , 2016, QPL.
[103] Vladimir Zamdzhiev,et al. An Abstract Approach towards Quantum Secret Sharing , 2012 .
[104] Bob Coecke. Terminality Implies No-signalling ...and Much More Than That , 2016, New Generation Computing.
[105] Bob Coecke,et al. Axiomatic Description of Mixed States From Selinger's CPM-construction , 2008, QPL.
[106] Imre Simon,et al. On Semigroups of Matrices over the Tropical Semiring , 1994, RAIRO Theor. Informatics Appl..
[107] N. Mermin. Quantum mysteries revisited , 1990 .
[108] C. J. Isham,et al. A topos foundation for theories of physics: I. Formal languages for physics , 2007 .
[109] D. Hilbert. The theory of algebraic number fields , 1998 .
[110] Andrei Khrennikov. Hyperbolic quantum mechanics , 2000 .
[111] Samson Abramsky,et al. The Cohomology of Non-Locality and Contextuality , 2011, QPL.
[112] Ross Street. Quantum groups: a path to current algebra , 2007 .
[113] R. Feynman. Quantum mechanical computers , 1986 .
[114] Aleks Kissinger,et al. Strong Complementarity and Non-locality in Categorical Quantum Mechanics , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.
[115] Richard Jozsa,et al. Quantum factoring, discrete logarithms, and the hidden subgroup problem , 1996, Comput. Sci. Eng..
[116] David N. Yetter,et al. Quantales and (noncommutative) linear logic , 1990, Journal of Symbolic Logic.
[117] Stefano Gogioso. Operational Mermin non-locality and All-vs-Nothing arguments , 2015, ArXiv.
[118] Samson Abramsky,et al. Categorical quantum mechanics , 2008, 0808.1023.
[119] S. Majid. Foundations of Quantum Group Theory , 1995 .
[120] W. Zeng,et al. Fourier transforms from strongly complementary observables , 2015, 1501.04995.
[121] Jamie Vicary. Topological Structure of Quantum Algorithms , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.
[122] Stefano Gogioso,et al. Towards Quantum Field Theory in Categorical Quantum Mechanics , 2017, QPL.
[123] A. Robinson. Non-standard analysis , 1966 .
[124] R. Jozsa,et al. Quantum Computation and Shor's Factoring Algorithm , 1996 .
[125] William Zeng,et al. Models of Quantum Algorithms in Sets and Relations , 2015, ArXiv.
[126] Giulio Chiribella,et al. Entanglement and thermodynamics in general probabilistic theories , 2015, 1504.07045.
[127] Peter Selinger,et al. Autonomous categories in which A ∼ = A ∗ , 2014 .
[128] Jamie Vicary,et al. Groupoid Semantics for Thermal Computing , 2014, ArXiv.
[129] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, LICS 2004.
[130] Umesh Vazirani,et al. Fully device-independent quantum key distribution. , 2012, 1210.1810.
[131] Jamie Vicary,et al. Quantum Latin squares and unitary error bases , 2015, Quantum Inf. Comput..
[132] Aleks Kissinger,et al. Pictures of processes : automated graph rewriting for monoidal categories and applications to quantum computing , 2012, ArXiv.
[133] U. Vazirani,et al. Quantum algorithms and the fourier transform , 2004 .
[134] Dusko Pavlovic,et al. Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.
[135] Oded Regev. Quantum Computation and Lattice Problems , 2004, SIAM J. Comput..
[136] Stefano Gogioso,et al. A Bestiary of Sets and Relations , 2015, QPL.
[137] Jean-Pierre Seifert,et al. On the complexity of computing short linearly independent vectors and short bases in a lattice , 1999, STOC '99.
[138] Alán Aspuru-Guzik,et al. Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics , 2013, Proceedings of the National Academy of Sciences.
[139] S. Woronowicz. Compact quantum groups , 2000 .
[140] Sean Tull,et al. Operational Theories of Physics as Categories , 2016, ArXiv.
[141] Bryan W. Roberts,et al. Time, symmetry and structure: a study in the foundations of quantum theory , 2012 .
[142] R. Goldblatt. Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .
[143] 河東 泰之,et al. A.Connes:Noncommutative Geometry , 1997 .
[144] M. Stone. On One-Parameter Unitary Groups in Hilbert Space , 1932 .
[145] Peter Nyman,et al. On the Consistency of the Quantum-Like Representation Algorithm for Hyperbolic Interference , 2010, 1009.1744.
[146] M. O. Farrukh. Application of nonstandard analysis to quantum mechanics , 1975 .
[147] Aleks Kissinger,et al. Fully graphical treatment of the quantum algorithm for the Hidden Subgroup Problem , 2017, 1701.08669.
[148] Jinhyoung Lee,et al. Greenberger-Horne-Zeilinger nonlocality in arbitrary even dimensions , 2006 .
[149] Alexander Russell,et al. The Symmetric Group Defies Strong Fourier Sampling: Part I , 2005, ArXiv.
[150] Ross Duncan,et al. Interacting Frobenius Algebras are Hopf , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[151] Samson Abramsky,et al. Domain Theory and the Logic of Observable Properties , 2011, ArXiv.
[152] G. D’Ariano,et al. Probabilistic theories with purification , 2009, 0908.1583.
[153] G. D’Ariano,et al. Informational derivation of quantum theory , 2010, 1011.6451.
[154] Michael D. Westmoreland,et al. Almost Quantum Theory , 2016 .