Categorical quantum dynamics

We use strong complementarity to introduce dynamics and symmetries within the framework of CQM, which we also extend to infinite-dimensional separable Hilbert spaces: these were long-missing features, which open the way to a wealth of new applications. The coherent treatment presented in this work also provides a variety of novel insights into the dynamics and symmetries of quantum systems: examples include the extremely simple characterisation of symmetry-observable duality, the connection of strong complementarity with the Weyl Canonical Commutation Relations, the generalisations of Feynman's clock construction, the existence of time observables and the emergence of quantum clocks. Furthermore, we show that strong complementarity is a key resource for quantum algorithms and protocols. We provide the first fully diagrammatic, theory-independent proof of correctness for the quantum algorithm solving the Hidden Subgroup Problem, and show that strong complementarity is the feature providing the quantum advantage. In quantum foundations, we use strong complementarity to derive the exact conditions relating non-locality to the structure of phase groups, within the context of Mermin-type non-locality arguments. Our non-locality results find further application to quantum cryptography, where we use them to define a quantum-classical secret sharing scheme with provable device-independent security guarantees. All in all, we argue that strong complementarity is a truly powerful and versatile building block for quantum theory and its applications, and one that should draw a lot more attention in the future.

[1]  Aleks Kissinger,et al.  Can quantum theory be characterized in information-theoretic terms? , 2016, ArXiv.

[2]  Chris Heunen,et al.  Pictures of complete positivity in arbitrary dimension , 2011, Inf. Comput..

[3]  W. Beckner Inequalities in Fourier analysis , 1975 .

[4]  Jamie Vicary,et al.  Tight Reference Frame-Independent Quantum Teleportation , 2016, QPL.

[5]  Samson Abramsky,et al.  An Operational Interpretation of Negative Probabilities and No-Signalling Models , 2014, Horizons of the Mind.

[6]  Prakash Panangaden,et al.  Classifying all mutually unbiased bases in Rel , 2009, 0909.4453.

[7]  Dominic Horsman,et al.  Quantum picturalism for topological cluster-state computing , 2011, 1101.4722.

[9]  Damian Markham,et al.  Quantum protocols within Spekkens' toy model , 2016, 1608.09012.

[10]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[11]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[12]  Ralph Kopperman,et al.  All topologies come from generalized metrics , 1988 .

[13]  Samson Abramsky,et al.  Operational theories and Categorical quantum mechanics , 2012, 1206.0921.

[14]  Ross Street,et al.  Traced monoidal categories , 1996 .

[15]  Ravishankar Ramanathan,et al.  No Quantum Realization of Extremal No-Signaling Boxes. , 2014, Physical review letters.

[16]  J. Neumann Proof of the Quasi-Ergodic Hypothesis. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[19]  Aleks Kissinger,et al.  Categorical Quantum Mechanics I: Causal Quantum Processes , 2015, 1510.05468.

[20]  Vladimir Zamdzhiev,et al.  The ZX calculus is incomplete for quantum mechanics , 2014, QPL.

[21]  Bill Edwards,et al.  Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.

[22]  Chris Heunen,et al.  Axiomatizing complete positivity , 2015, ArXiv.

[23]  Samson Abramsky,et al.  H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics , 2010, 1011.6123.

[24]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[25]  A. Yu. Khrennikov p-Adic probability theory and its applications. The principle of statistical stabilization of frequencies , 1993 .

[26]  Jamie Vicary Higher Semantics of Quantum Protocols , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[27]  B. Coecke,et al.  Spekkens's toy theory as a category of processes , 2011, 1108.1978.

[28]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[29]  W. Ambrose Structure theorems for a special class of Banach algebras , 1945 .

[30]  M. Stone,et al.  Linear Transformations in Hilbert Space: III. Operational Methods and Group Theory. , 1930, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[32]  Lorenzo Catani,et al.  Spekkens’ toy model in all dimensions and its relationship with stabiliser quantum mechanics , 2017, 1701.07801.

[33]  Jan Hilgevoord,et al.  Time in quantum mechanics: a story of confusion , 2005 .

[34]  John C. Baez,et al.  Physics, Topology, Logic and Computation: A Rosetta Stone , 2009, 0903.0340.

[35]  V. Maslov On a new principle of superposition for optimization problems , 1987 .

[36]  J. Baez Division Algebras and Quantum Theory , 2011, 1101.5690.

[37]  Samson Abramsky,et al.  Relational Hidden Variables and Non-Locality , 2010, Studia Logica.

[38]  S. Woronowicz,et al.  Compact matrix pseudogroups , 1987 .

[39]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[40]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[41]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[42]  B. Hall Quantum Theory for Mathematicians , 2013 .

[43]  J. Neumann Die Eindeutigkeit der Schrödingerschen Operatoren , 1931 .

[44]  Stefano Gogioso,et al.  Mermin Non-Locality in Abstract Process Theories , 2015 .

[45]  Martin Rötteler,et al.  Limitations of quantum coset states for graph isomorphism , 2006, STOC '06.

[46]  Imre Simon,et al.  Recognizable Sets with Multiplicities in the Tropical Semiring , 1988, MFCS.

[47]  E. Thiran,et al.  Quantum mechanics on p-adic fields , 1989 .

[48]  Clifford,et al.  Preliminary Sketch of Biquaternions , 1871 .

[49]  Miriam Backens,et al.  A Complete Graphical Calculus for Spekkens’ Toy Bit Theory , 2014, 1411.1618.

[50]  Thomas Pashby,et al.  Time and Quantum Theory: A History and A Prospectus , 2015 .

[51]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[52]  R. Feynman Simulating physics with computers , 1999 .

[53]  J. Pin Tropical Semirings Jean-Eric Pin , 2005 .

[54]  Steven J. Vickers,et al.  Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.

[55]  Stephen J. Garland,et al.  Algorithm 97: Shortest path , 1962, Commun. ACM.

[56]  Ross Duncan,et al.  A graphical approach to measurement-based quantum computing , 2012, Quantum Physics and Linguistics.

[57]  Dagomir Kaszlikowski,et al.  Greenberger-Horne-Zeilinger paradoxes for N N -dimensional systems , 2002 .

[58]  J. Baez,et al.  Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.

[59]  Aleks Kissinger,et al.  Categories of quantum and classical channels , 2016, Quantum Inf. Process..

[60]  Niel de Beaudrap On computation with 'probabilities' modulo k , 2014, 1405.7381.

[61]  Masanao Ozawa,et al.  Unitary representations of the hyperfinite Heisenberg group and the logical extension methods in physics , 1993 .

[62]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[63]  Bas Spitters,et al.  Mathematical Physics A Topos for Algebraic Quantum Theory , 2009 .

[64]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[65]  Samson Abramsky,et al.  The sheaf-theoretic structure of non-locality and contextuality , 2011, 1102.0264.

[66]  Grigory Mikhalkin,et al.  Amoebas of Algebraic Varieties and Tropical Geometry , 2004, math/0403015.

[67]  A. Kock Strong functors and monoidal monads , 1972 .

[68]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[69]  Alexander Russell,et al.  Normal subgroup reconstruction and quantum computation using group representations , 2000, STOC '00.

[70]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[71]  Aleks Kissinger,et al.  Picturing Quantum Processes by Bob Coecke , 2017 .

[72]  Bob Coecke,et al.  The logic of quantum mechanics - Take II , 2012, ArXiv.

[73]  Stefano Pironio,et al.  Greenberger-Horne-Zeilinger paradoxes for many qudits. , 2002, Physical review letters.

[74]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[75]  Kohei Kishida,et al.  Contextuality, Cohomology and Paradox , 2015, CSL.

[76]  J. Neumann,et al.  On an Algebraic generalization of the quantum mechanical formalism , 1934 .

[77]  Chris Heunen,et al.  Entangled and sequential quantum protocols with dephasing. , 2011, Physical review letters.

[78]  Jamie Vicary,et al.  Abstract structure of unitary oracles for quantum algorithms , 2014, QPL.

[79]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[80]  Igor Volovich,et al.  p-adic quantum mechanics , 1989 .

[81]  Ralph Kopperman,et al.  Continuity Spaces: Reconciling Domains and Metric Spaces , 1997, Theor. Comput. Sci..

[82]  Amar Hadzihasanovic,et al.  A Diagrammatic Axiomatisation for Qubit Entanglement , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[83]  Peter W. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1999 .

[84]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[85]  D. Kaszlikowski,et al.  GREENBERGER-HORNE-ZEILINGER PARADOXES WITH SYMMETRIC MULTIPORT BEAM SPLITTERS , 1999, quant-ph/9911039.

[86]  Jeremy Butterfield,et al.  On Time in Quantum Physics , 2013, 1406.4745.

[87]  Xiao Yuan,et al.  Bridging the gap between general probabilistic theories and the device-independent framework for nonlocality and contextuality , 2015, Inf. Comput..

[88]  H. Araki A Characterization of the State Space of Quantum Mechanics , 1980 .

[89]  Alexander Wilce A Royal Road to Quantum Theory (or Thereabouts), Extended Abstract. , 2016 .

[90]  S. Gogioso Fantastic Quantum Theories and Where to Find Them , 2017, 1703.10576.

[91]  Stefano Gogioso,et al.  Categorical Probabilistic Theories , 2017, QPL.

[92]  Benjamin Schumacher,et al.  Modal Quantum Theory , 2010, 1204.0701.

[93]  John E. Roberts,et al.  A new duality theory for compact groups , 1989 .

[94]  Marek Żukowski,et al.  53 26 v 3 [ qu an tph ] 7 O ct 2 01 3 Greenberger-Horne-Zeilinger theorem for N qudits , 2013 .

[95]  Miriam Backens,et al.  The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.

[96]  A. Yu. Khrennikov,et al.  p‐adic quantum mechanics with p‐adic valued functions , 1991 .

[97]  Dusko Pavlovic,et al.  A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.

[98]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[99]  S. Gogioso Categorical Semantics for Schr\"odinger's Equation , 2015, 1501.06489.

[100]  Aleks Kissinger,et al.  Quantomatic: A proof assistant for diagrammatic reasoning , 2015, CADE.

[101]  T.N.Palmer $p$-adic Distance, Finite Precision and Emergent Superdeterminism: A Number-Theoretic Consistent-Histories Approach to Local Quantum Realism , 2016, 1609.08148.

[102]  Stefano Gogioso,et al.  Infinite-dimensional Categorical Quantum Mechanics , 2016, QPL.

[103]  Vladimir Zamdzhiev,et al.  An Abstract Approach towards Quantum Secret Sharing , 2012 .

[104]  Bob Coecke Terminality Implies No-signalling ...and Much More Than That , 2016, New Generation Computing.

[105]  Bob Coecke,et al.  Axiomatic Description of Mixed States From Selinger's CPM-construction , 2008, QPL.

[106]  Imre Simon,et al.  On Semigroups of Matrices over the Tropical Semiring , 1994, RAIRO Theor. Informatics Appl..

[107]  N. Mermin Quantum mysteries revisited , 1990 .

[108]  C. J. Isham,et al.  A topos foundation for theories of physics: I. Formal languages for physics , 2007 .

[109]  D. Hilbert The theory of algebraic number fields , 1998 .

[110]  Andrei Khrennikov Hyperbolic quantum mechanics , 2000 .

[111]  Samson Abramsky,et al.  The Cohomology of Non-Locality and Contextuality , 2011, QPL.

[112]  Ross Street Quantum groups: a path to current algebra , 2007 .

[113]  R. Feynman Quantum mechanical computers , 1986 .

[114]  Aleks Kissinger,et al.  Strong Complementarity and Non-locality in Categorical Quantum Mechanics , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[115]  Richard Jozsa,et al.  Quantum factoring, discrete logarithms, and the hidden subgroup problem , 1996, Comput. Sci. Eng..

[116]  David N. Yetter,et al.  Quantales and (noncommutative) linear logic , 1990, Journal of Symbolic Logic.

[117]  Stefano Gogioso Operational Mermin non-locality and All-vs-Nothing arguments , 2015, ArXiv.

[118]  Samson Abramsky,et al.  Categorical quantum mechanics , 2008, 0808.1023.

[119]  S. Majid Foundations of Quantum Group Theory , 1995 .

[120]  W. Zeng,et al.  Fourier transforms from strongly complementary observables , 2015, 1501.04995.

[121]  Jamie Vicary Topological Structure of Quantum Algorithms , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[122]  Stefano Gogioso,et al.  Towards Quantum Field Theory in Categorical Quantum Mechanics , 2017, QPL.

[123]  A. Robinson Non-standard analysis , 1966 .

[124]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[125]  William Zeng,et al.  Models of Quantum Algorithms in Sets and Relations , 2015, ArXiv.

[126]  Giulio Chiribella,et al.  Entanglement and thermodynamics in general probabilistic theories , 2015, 1504.07045.

[127]  Peter Selinger,et al.  Autonomous categories in which A ∼ = A ∗ , 2014 .

[128]  Jamie Vicary,et al.  Groupoid Semantics for Thermal Computing , 2014, ArXiv.

[129]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[130]  Umesh Vazirani,et al.  Fully device-independent quantum key distribution. , 2012, 1210.1810.

[131]  Jamie Vicary,et al.  Quantum Latin squares and unitary error bases , 2015, Quantum Inf. Comput..

[132]  Aleks Kissinger,et al.  Pictures of processes : automated graph rewriting for monoidal categories and applications to quantum computing , 2012, ArXiv.

[133]  U. Vazirani,et al.  Quantum algorithms and the fourier transform , 2004 .

[134]  Dusko Pavlovic,et al.  Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.

[135]  Oded Regev Quantum Computation and Lattice Problems , 2004, SIAM J. Comput..

[136]  Stefano Gogioso,et al.  A Bestiary of Sets and Relations , 2015, QPL.

[137]  Jean-Pierre Seifert,et al.  On the complexity of computing short linearly independent vectors and short bases in a lattice , 1999, STOC '99.

[138]  Alán Aspuru-Guzik,et al.  Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics , 2013, Proceedings of the National Academy of Sciences.

[139]  S. Woronowicz Compact quantum groups , 2000 .

[140]  Sean Tull,et al.  Operational Theories of Physics as Categories , 2016, ArXiv.

[141]  Bryan W. Roberts,et al.  Time, symmetry and structure: a study in the foundations of quantum theory , 2012 .

[142]  R. Goldblatt Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .

[143]  河東 泰之,et al.  A.Connes:Noncommutative Geometry , 1997 .

[144]  M. Stone On One-Parameter Unitary Groups in Hilbert Space , 1932 .

[145]  Peter Nyman,et al.  On the Consistency of the Quantum-Like Representation Algorithm for Hyperbolic Interference , 2010, 1009.1744.

[146]  M. O. Farrukh Application of nonstandard analysis to quantum mechanics , 1975 .

[147]  Aleks Kissinger,et al.  Fully graphical treatment of the quantum algorithm for the Hidden Subgroup Problem , 2017, 1701.08669.

[148]  Jinhyoung Lee,et al.  Greenberger-Horne-Zeilinger nonlocality in arbitrary even dimensions , 2006 .

[149]  Alexander Russell,et al.  The Symmetric Group Defies Strong Fourier Sampling: Part I , 2005, ArXiv.

[150]  Ross Duncan,et al.  Interacting Frobenius Algebras are Hopf , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[151]  Samson Abramsky,et al.  Domain Theory and the Logic of Observable Properties , 2011, ArXiv.

[152]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[153]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[154]  Michael D. Westmoreland,et al.  Almost Quantum Theory , 2016 .