The action of aminoguanidine on the liver of trained diabetic rats

[1]  Rafael Neodini Remedio Alterações histoquímicas e ultraestruturas do fígado e intestino grosso de ratos diabéticos tipo I e os efeitos do treinamento físico , 2010 .

[2]  David M Nathan,et al.  10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. , 2009, Lancet.

[3]  F. Santilli,et al.  Soluble RAGE in type 2 diabetes: association with oxidative stress. , 2007, Free radical biology & medicine.

[4]  L. Mandarino,et al.  The effect of exercise, training, and inactivity on insulin sensitivity in diabetics and their relatives: what is new? , 2007, Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme.

[5]  E. Luciano,et al.  Effects of short-term physical training on the liver IGF-I in diabetic rats , 2007, Growth factors.

[6]  F. Strollo,et al.  Blood glucose changes in diabetic children and adolescents engaged in most common sports activities. , 2006, Acta bio-medica : Atenei Parmensis.

[7]  M. Torsoni,et al.  Aminoguanidine prevented impairment of blood antioxidant system in insulin-dependent diabetic rats. , 2006, Life sciences.

[8]  Merlin C. Thomas,et al.  Below the radar: advanced glycation end products that detour "around the side". Is HbA1c not an accurate enough predictor of long term progression and glycaemic control in diabetes? , 2005, Clinical biochemist reviews.

[9]  M. Papoti,et al.  MAXIMAL LACTATE STEADY STATE IN RUNNING RATS , 2005 .

[10]  D. Stern,et al.  Understanding RAGE, the receptor for advanced glycation end products , 2005, Journal of Molecular Medicine.

[11]  C. Rickards,et al.  Regulation of fuel metabolism by preexercise muscle glycogen content and exercise intensity. , 2004, Journal of applied physiology.

[12]  Paul J Thornalley Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. , 2003, Archives of biochemistry and biophysics.

[13]  Pierre-Marie Lepretre,et al.  Training and bioenergetic characteristics in elite male and female Kenyan runners. , 2003, Medicine and science in sports and exercise.

[14]  K. Petersen,et al.  Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. , 2002, The American journal of cardiology.

[15]  M. Brownlee,et al.  Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. , 1998, Diabetes.

[16]  M Duriez,et al.  Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  B. Zingarelli,et al.  Mercaptoethylguanidine and Guanidine Inhibitors of Nitric-oxide Synthase React with Peroxynitrite and Protect against Peroxynitrite-induced Oxidative Damage* , 1997, The Journal of Biological Chemistry.

[18]  Claudio Gobatto,et al.  Alterações metabolicas decorrentes do treinamento fisico em ratos previamente desnutridos e recuperados , 1993 .

[19]  J. Clore,et al.  Evidence for increased liver glycogen in patients with noninsulin-dependent diabetes mellitus after a 3-day fast. , 1992, The Journal of clinical endocrinology and metabolism.

[20]  E. Ferrannini,et al.  Influence of long-term diabetes on liver glycogen metabolism in the rat. , 1990, Metabolism: clinical and experimental.

[21]  D. Hinton,et al.  Liver structural alterations accompanying chronic toxicity in fishes: Potential biomarkers of exposure , 1988 .

[22]  L. Rhodes,et al.  Epizootic characteristics of hepatic and renal lesions in English sole, Parophrys vetulus, from Puget Sound , 1987 .

[23]  A. Cerami,et al.  Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. , 1986, Science.

[24]  B. Bahnak,et al.  Effects of alloxan diabetes on the turnover of rat liver glycogen synthase. Comparison with liver phosphorylase. , 1982, The Journal of biological chemistry.

[25]  A. Nadeau,et al.  Beneficial Effects of Physical Training in Rats with a Mild Streptozotocin-induced Diabetes Mellitus , 1982, Diabetes.

[26]  J. Bond Failure to Demonstrate Increased Protein Turnover and Intracellular Proteinase Activity in Livers of Mice with Streptozotocin-induced Diabetes , 1980, Diabetes.

[27]  D. Hems,et al.  Glycogen synthesis in the perfused liver of streptozotocin-diabetic rats. , 1975, The Biochemical journal.

[28]  A. Pearse Histochemistry: Theoretical and Applied , 1953 .

[29]  Nessar Ahmed,et al.  Advanced glycation endproducts--role in pathology of diabetic complications. , 2005, Diabetes research and clinical practice.

[30]  V. Jakuš,et al.  Advanced glycation end-products and the progress of diabetic vascular complications. , 2004, Physiological research.

[31]  J. D. Méndez Productos finales de glicación avanzada y complicaciones crónicas de la diabetes mellitus , 2003 .

[32]  Brian R MacIntosh,et al.  Anaerobic threshold: the concept and methods of measurement. , 2003, Canadian journal of applied physiology = Revue canadienne de physiologie appliquee.

[33]  A. U.S Effects of Alloxan Diabetes on the Turnover of Rat Liver Glycogen Synthase , 2001 .

[34]  S. Adams,et al.  Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminant stress , 1997 .

[35]  Eliete Luciano,et al.  Influências do treinamento físico sobre o metabolismo de carboidratos em ratos diabéticos experimentais , 1991 .

[36]  H. Heck,et al.  Formaldehyde (CH2O) concentrations in the blood of humans and Fischer-344 rats exposed to CH2O under controlled conditions. , 1985, American Industrial Hygiene Association journal.

[37]  Albert L Lehninger,et al.  Principios de bioquímica , 1984 .

[38]  J. Vallance‐owen,et al.  Liver Glycogen in Diabetes Mellitus , 1952, Journal of clinical pathology.