Analysis of the Finite Element Method for the Laplace–Beltrami Equation on Surfaces with Regions of High Curvature Using Graded Meshes

We derive error estimates for the piecewise linear finite element approximation of the Laplace–Beltrami operator on a bounded, orientable, $$C^3$$C3, surface without boundary on general shape regular meshes. As an application, we consider a problem where the domain is split into two regions: one which has relatively high curvature and one that has low curvature. Using a graded mesh we prove error estimates that do not depend on the curvature on the high curvature region. Numerical experiments are provided.

[1]  Maxim A. Olshanskii,et al.  A narrow-band unfitted finite element method for elliptic PDEs posed on surfaces , 2014, Math. Comput..

[2]  Maxim A. Olshanskii,et al.  A stabilized finite element method for advection-diffusion equations on surfaces , 2013, 1301.3741.

[3]  Andreas Dedner,et al.  Analysis of the discontinuous Galerkin method for elliptic problems on surfaces , 2012, IMA Journal of Numerical Analysis.

[4]  Michael J. Holst,et al.  Geometric Variational Crimes: Hilbert Complexes, Finite Element Exterior Calculus, and Problems on Hypersurfaces , 2010, Foundations of Computational Mathematics.

[5]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements , 1979 .

[6]  Maxim A. Olshanskii,et al.  A finite element method for surface PDEs: matrix properties , 2009, Numerische Mathematik.

[7]  Maxim A. Olshanskii,et al.  An Adaptive Surface Finite Element Method Based on Volume Meshes , 2012, SIAM J. Numer. Anal..

[8]  Peter Hansbo,et al.  A stabilized finite element method for the Darcy problem on surfaces , 2016 .

[9]  A. Mennucci,et al.  Hamilton—Jacobi Equations and Distance Functions on Riemannian Manifolds , 2002, math/0201296.

[10]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[11]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[12]  Peter Hansbo,et al.  A stabilized cut finite element method for partial differential equations on surfaces: The Laplace–Beltrami operator , 2013, 1312.1097.

[13]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[14]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[15]  F. Camacho,et al.  L2 and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces , 2015 .

[16]  Y. Efendiev,et al.  Multiscale Finite Element Methods for Flows on Rough Surfaces , 2013 .

[17]  Peter Hansbo,et al.  Stabilized Finite Element Approximation of the Mean Curvature Vector on Closed Surfaces , 2014, SIAM J. Numer. Anal..

[18]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[19]  Maxim A. Olshanskii,et al.  An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..

[20]  M. Olshanskii,et al.  Non-degenerate Eulerian finite element method for solving PDEs on surfaces , 2013, 1301.4707.

[21]  Alan Demlow,et al.  An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..

[22]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[23]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[24]  Ricardo H. Nochetto,et al.  High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates , 2015, Found. Comput. Math..

[25]  G. Anastassiou,et al.  Differential Geometry of Curves and Surfaces , 2014 .

[26]  Andreas Dedner,et al.  Adaptive discontinuous Galerkin methods on surfaces , 2014, Numerische Mathematik.

[27]  Shawn W. Walker,et al.  The Shapes of Things - A Practical Guide to Differential Geometry and the Shape Derivative , 2015 .

[28]  A. H. Schatz,et al.  Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .

[29]  Maxim A. Olshanskii,et al.  An adaptive octree finite element method for PDEs posed on surfaces , 2014, 1408.3891.

[30]  Andreas Dedner,et al.  High Order Discontinuous Galerkin Methods for Elliptic Problems on Surfaces , 2015, SIAM J. Numer. Anal..

[31]  Alan Demlow,et al.  Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces , 2016, Math. Comput..

[32]  Charles M. Elliott,et al.  An h-narrow band finite-element method for elliptic equations on implicit surfaces , 2010 .

[33]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[34]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[35]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .