The R-process Alliance: A Nearly Complete R-process Abundance Template Derived from Ultraviolet Spectroscopy of the R-process-enhanced Metal-poor Star HD 222925

We present a nearly complete rapid neutron-capture process (r-process) chemical inventory of the metal-poor ([Fe/H] = −1.46 ± 0.10) r-process-enhanced ([Eu/Fe] = +1.32 ± 0.08) halo star HD 222925. This abundance set is the most complete for any object beyond the solar system, with a total of 63 metals detected and seven with upper limits. It comprises 42 elements from 31 ≤ Z ≤ 90, including elements rarely detected in r-process-enhanced stars, such as Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, W, Re, Os, Ir, Pt, and Au. We derive these abundances from an analysis of 404 absorption lines in ultraviolet spectra collected using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and previously analyzed optical spectra. A series of appendices discusses the atomic data and quality of fits for these lines. The r-process elements from Ba to Pb, including all elements at the third r-process peak, exhibit remarkable agreement with the solar r-process residuals, with a standard deviation of the differences of only 0.08 dex (17%). In contrast, deviations among the lighter elements from Ga to Te span nearly 1.4 dex, and they show distinct trends from Ga to Se, Nb through Cd, and In through Te. The r-process contribution to Ga, Ge, and As is small, and Se is the lightest element whose production is dominated by the r-process. The lanthanide fraction, log X La = −1.39 ± 0.09, is typical for r-process-enhanced stars and higher than that of the kilonova from the GW170817 neutron-star merger event. We advocate adopting this pattern as an alternative to the solar r-process-element residuals when confronting future theoretical models of heavy-element nucleosynthesis with observations.

[1]  B. Arora,et al.  Two-dipole and three-dipole interaction coefficients of group XII elements , 2022, Physica B: Condensed Matter.

[2]  A. Ubelis,et al.  Branching fraction measurements of arsenic 4p25s-4p3 transitions , 2021, Journal of Quantitative Spectroscopy and Radiative Transfer.

[3]  B. Schmidt,et al.  High-resolution spectroscopic follow-up of the most metal-poor candidates from SkyMapper DR1.1 , 2021, Monthly Notices of the Royal Astronomical Society.

[4]  B. Schmidt,et al.  r-Process elements from magnetorotational hypernovae , 2021, Nature.

[5]  D. Feuillet,et al.  Selecting accreted populations: metallicity, elemental abundances, and ages of the Gaia-Sausage-Enceladus and Sequoia populations , 2021, Monthly Notices of the Royal Astronomical Society.

[6]  E. A. Den Hartog,et al.  Atomic Transition Probabilities of Neutral Calcium , 2021, 2105.10534.

[7]  R. Peterson The Abundance of Lead in Four Metal-poor Stars , 2021, 2105.09456.

[8]  James E. Lawler,et al.  Linemake: An Atomic and Molecular Line List Generator , 2021, Research Notes of the AAS.

[9]  E. A. Den Hartog,et al.  Improved Atomic Transition Probabilities for UV and Optical Lines of Hf II and Determination of the Hf Abundance in Two Metal-poor Stars , 2021, The Astrophysical Journal Supplement Series.

[10]  Z. Dai,et al.  Hyperfine structure measurements of Co I and Co II with Fourier transform spectroscopy , 2021 .

[11]  T. Beers,et al.  The R-Process Alliance: Chemodynamically Tagged Groups of Halo r-process-enhanced Stars Reveal a Shared Chemical-evolution History , 2020, The Astrophysical Journal.

[12]  P. J. Richards,et al.  Gaia Early Data Release 3: Summary of the contents and survey properties , 2020, 2012.01533.

[13]  T. Beers,et al.  Metal-poor Stars Observed with the Southern African Large Telescope , 2020, The Astrophysical Journal.

[14]  T. Beers,et al.  Detection of Pb II in the Ultraviolet Spectra of Three Metal-poor Stars , 2020, The Astrophysical Journal.

[15]  S. Shectman,et al.  Vanadium Abundance Derivations in 255 Metal-poor Stars , 2020, The Astrophysical Journal.

[16]  C. Kobayashi,et al.  The Origin of Elements from Carbon to Uranium , 2020, The Astrophysical Journal.

[17]  B. Gibson,et al.  The R-Process Alliance: Fourth Data Release from the Search for R-process-enhanced Stars in the Galactic Halo , 2020, The Astrophysical Journal Supplement Series.

[18]  T. Beers,et al.  The R-process Alliance: First Magellan/MIKE Release from the Southern Search for R-Process-enhanced Stars , 2020, 2006.07731.

[19]  C. Chiappini,et al.  Chronologically dating the early assembly of the Milky Way , 2020, Nature Astronomy.

[20]  E. A. Den Hartog,et al.  Hyperfine Structure Constants for Levels of 175Lu+ , 2020, The Astrophysical Journal Supplement Series.

[21]  B. Barbuy,et al.  Trans-iron Ge, As, Se, and heavier elements in the dwarf metal-poor stars HD 19445, HD 84937, HD 94028, HD 140283, and HD 160617 , 2020, Astronomy & Astrophysics.

[22]  J. Lawler,et al.  Detailed Iron-peak Element Abundances in Three Very Metal-poor Stars , 2020, The Astrophysical Journal.

[23]  J. Fynbo,et al.  Identification of strontium in the merger of two neutron stars , 2019, Nature.

[24]  E. A. Den Hartog,et al.  Atomic Transition Probabilities for UV and Blue Lines of Fe ii and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937 , 2019, The Astrophysical Journal Supplement Series.

[25]  M. Drout,et al.  The Lanthanide Fraction Distribution in Metal-poor Stars: A Test of Neutron Star Mergers as the Dominant r-process Site , 2019, The Astrophysical Journal.

[26]  E. Holmbeck,et al.  Using excitation-energy dependent fission yields to identify key fissioning nuclei in r-process nucleosynthesis , 2018, Journal of Physics G: Nuclear and Particle Physics.

[27]  P. Quinet,et al.  MCDHF calculations of isotope shifts in neutral antimony , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[28]  D. Siegel,et al.  Collapsars as a major source of r-process elements , 2018, Nature.

[29]  Z. Dai,et al.  Experimental radiative lifetimes, branching fractions, transition probabilities and oscillator strengths of some levels in Au I , 2018, Journal of Physics B: Atomic, Molecular and Optical Physics.

[30]  Kenneth C. Freeman,et al.  The R-Process Alliance: First Release from the Northern Search for r-process-enhanced Metal-poor Stars in the Galactic Halo , 2018, The Astrophysical Journal.

[31]  T. Beers,et al.  TheR-Process Alliance: A Comprehensive Abundance Analysis of HD 222925, a Metal-poor Star with an ExtremeR-process Enhancement of [Eu/H] = −0.14 , 2018, The Astrophysical Journal.

[32]  Monica Valluri,et al.  Kinematics of Highly r-process-enhanced Field Stars: Evidence for an Accretion Origin and Detection of Several Groups from Disrupted Satellites , 2018, The Astronomical Journal.

[33]  P. Quinet,et al.  Calculated oscillator strengths for the strongest lines of cosmochronological interest in the visible spectrum of singly ionized uranium (U II) , 2018, Monthly Notices of the Royal Astronomical Society.

[34]  S. Andrievsky,et al.  Copper abundance from Cu i and Cu ii lines in metal-poor star spectra: NLTE versus LTE , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  A. Frebel From Nuclei to the Cosmos: Tracing Heavy-Element Production with the Oldest Stars , 2018, Annual Review of Nuclear and Particle Science.

[36]  Anthony G. A. Brown,et al.  The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk , 2018, Nature.

[37]  J. Lawler,et al.  Transition Probabilities of Co ii Weak Lines to the Ground and Low Metastable Levels , 2018, The Astrophysical journal.

[38]  Ann Merchant Boesgaard,et al.  Consistent Iron Abundances Derived from Neutral and Singly Ionized Iron Lines in Ultraviolet and Optical Spectra of Six Warm Metal-poor Stars , 2018, The Astrophysical Journal.

[39]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[40]  Anna Frebel,et al.  The R-process Alliance: First Release from the Southern Search for R-process-enhanced Stars in the Galactic Halo , 2018 .

[41]  P. Barklem,et al.  A New Test of Copper and Zinc Abundances in Late-type Stars Using Ultraviolet Cu ii and Zn ii Lines , 2018, 1803.09763.

[42]  W. Wiese,et al.  Atomic Transition Probabilities, Vol. 2: Sodium Through Calcium; A Critical Data Compilation , 2018 .

[43]  Sergey E. Koposov,et al.  Co-formation of the disc and the stellar halo , 2018, 1802.03414.

[44]  F. Herwig,et al.  i-process Contribution of Rapidly Accreting White Dwarfs to the Solar Composition of First-peak Neutron-capture Elements , 2017, 1712.07551.

[45]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South , 2017, 1710.05454.

[46]  Larry Denneau,et al.  A kilonova as the electromagnetic counterpart to a gravitational-wave source , 2017, Nature.

[47]  B. A. Boom,et al.  Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817 , 2017, 1710.05836.

[48]  B. Metzger,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[49]  T. Nordlander,et al.  Non-LTE aluminium abundances in late-type stars , 2017, 1708.01949.

[50]  L. Mashonkina,et al.  Influence of inelastic collisions with hydrogen atoms on the non-LTE modelling of Ca I and Ca II lines in late-type stars , 2017, 1707.04399.

[51]  F. Kappeler,et al.  GALACTIC CHEMICAL EVOLUTION: THE IMPACT OF THE 13C-POCKET STRUCTURE ON THE s-PROCESS DISTRIBUTION , 2017, 1701.01056.

[52]  B. Metzger,et al.  Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers , 2016, 1607.05290.

[53]  B. Schmidt,et al.  The EMBLA survey – metal-poor stars in the Galactic bulge , 2016, 1604.07834.

[54]  J. Simon,et al.  R-process enrichment from a single event in an ancient dwarf galaxy , 2015, Nature.

[55]  T. Piran,et al.  Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis , 2015, Nature Physics.

[56]  Astronomy,et al.  Fe i Oscillator Strengths for Transitions from High-lying Odd-parity Levels , 2017, 1710.07571.

[57]  S. Shectman,et al.  Nine new metal-poor stars on the subgiant and red horizontal branches with high levels of r-process enhancement , 2014, 1409.5810.

[58]  Bo Zhang,et al.  Is germanium (Ge, Z = 32) a neutron-capture element? , 2014, 1409.5603.

[59]  E. A. Den Hartog,et al.  IMPROVED V ii log(gf) VALUES, HYPERFINE STRUCTURE CONSTANTS, AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2014, 1408.4175.

[60]  R. Kurucz,et al.  NEW Fe i LEVEL ENERGIES AND LINE IDENTIFICATIONS FROM STELLAR SPECTRA , 2014, 1406.0933.

[61]  M. Asplund,et al.  The elemental composition of the Sun - I. The intermediate mass elements Na to Ca , 2014, 1405.0279.

[62]  D. Kelson,et al.  A SEARCH FOR STARS OF VERY LOW METAL ABUNDANCE. VI. DETAILED ABUNDANCES OF 313 METAL-POOR STARS , 2014, 1403.6853.

[63]  J. Lawler,et al.  IMPROVED Co i log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2014, The Astrophysical journal. Supplement series.

[64]  L. Engström,et al.  Experimentally determined oscillator strengths in Rh II , 2013 .

[65]  J. A. Aguilera,et al.  Experimental transition probabilities for spectral lines of Re II , 2013 .

[66]  J. Lawler,et al.  IMPROVED Ti ii log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2013, 1309.1440.

[67]  J. Lawler,et al.  IMPROVED log(gf) VALUES FOR LINES OF Ti i AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti i) , 2013 .

[68]  T. Beers,et al.  XVI. HST/STIS abundances of heavy elements in the uranium-rich metal-poor star CS 31082-001 ?;?? , 2013 .

[69]  T. Beers,et al.  NEW HUBBLE SPACE TELESCOPE OBSERVATIONS OF HEAVY ELEMENTS IN FOUR METAL-POOR STARS , 2012, 1210.6387.

[70]  M. Asplund,et al.  Non-LTE line formation of Fe in late-type stars - II. 1D spectroscopic stellar parameters , 2012, 1207.2454.

[71]  Maria Bergemann,et al.  Non‐LTE line formation of Fe in late‐type stars – I. Standard stars with 1D and 〈3D〉 model atmospheres , 2012, 1207.2455.

[72]  B. Leibundgut,et al.  Silver and palladium help unveil the nature of a second r-process , 2012, 1205.4744.

[73]  A. Ryabtsev,et al.  Non-LTE effects on the lead and thorium abundance determinations for cool stars , 2012, 1202.2630.

[74]  V. Hill,et al.  XV. Third-peak r-process element and actinide abundances in the uranium-rich star CS31082-001 , 2011 .

[75]  S. Cristallo,et al.  The s-Process in Low Metallicity Stars. II. Interpretation of High-Resolution Spectroscopic Observations with AGB models , 2011, 1108.0500.

[76]  É. Biémont,et al.  Lifetime measurements and calculations in Y+ and Y2+ ions , 2011 .

[77]  E. A. Den Hartog,et al.  IMPROVED log(gf ) VALUES OF SELECTED LINES IN Mn i AND Mn ii FOR ABUNDANCE DETERMINATIONS IN FGK DWARFS AND GIANTS , 2011 .

[78]  L. KuruczRobert Including all the lines11This article is part of a Special Issue on the 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas. , 2011 .

[79]  J. Landstreet Abundances of the elements He to Ni in the atmosphere of Sirius A , 2011 .

[80]  S. Shectman,et al.  THE ABUNDANCES OF NEUTRON-CAPTURE SPECIES IN THE VERY METAL-POOR GLOBULAR CLUSTER M15: A UNIFORM ANALYSIS OF RED GIANT BRANCH AND RED HORIZONTAL BRANCH STARS , 2011, 1103.1008.

[81]  M. Asplund,et al.  Non-LTE calculations for neutral Na in late-type stars using improved atomic data , 2011, 1102.2160.

[82]  M. Bergemann,et al.  Chromium: NLTE abundances in metal-poor stars and nucleosynthesis in the Galaxy , 2010, 1006.0243.

[83]  A. Hibbert,et al.  Accurate configuration-interaction calculation of transitions in Sn II , 2010 .

[84]  É. Biémont,et al.  Transition probabilities of astrophysical interest in the niobium ions Nb+ and Nb2+ , 2010 .

[85]  J. Gurell,et al.  The FERRUM project : Laboratory-measured transition probabilities for Cr II , 2010, 1001.2139.

[86]  J. Pickering,et al.  NLTE analysis of Co i /Co ii lines in spectra of cool stars with new laboratory hyperfine splitting constants , 2009, 0909.2178.

[87]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[88]  K. Cheng,et al.  A large-scale relativistic configuration-interaction approach: application to the 4s2–4s4p transition energies and E1 rates for Zn-like ions , 2009 .

[89]  F. Grundahl,et al.  Signatures of intrinsic Li depletion and Li-Na anti-correlation in the metal-poor globular cluster NGC 6397 , , 2009, 0906.2876.

[90]  E. A. Den Hartog,et al.  IMPROVED LABORATORY TRANSITION PROBABILITIES FOR Ce ii, APPLICATION TO THE CERIUM ABUNDANCES OF THE SUN AND FIVE r-PROCESS-RICH, METAL-POOR STARS, AND RARE EARTH LAB DATA SUMMARY , 2009, 0903.1982.

[91]  B. Barbuy,et al.  Both accurate and precise gf-values for Fe II lines , 2009, 0901.4451.

[92]  H. Nilsson,et al.  Experimental oscillator strengths and hyperfine constants in Nb ii , 2008 .

[93]  Astrophysics,et al.  NLTE abundances of Mn in a sample of metal-poor stars ⋆ , 2008, 0811.0681.

[94]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy , 2008 .

[95]  Stephen A. Shectman,et al.  The MagE spectrograph , 2008, Astronomical Telescopes + Instrumentation.

[96]  É. Biémont,et al.  Lifetime measurements and transition probability calculations in singly ionized tungsten (WII) , 2008 .

[97]  E. A. Den Hartog,et al.  Improved Laboratory Transition Probabilities for Er II and Application to the Erbium Abundances of the Sun and Five r-Process-rich, Metal-poor Stars , 2008, 0804.4465.

[98]  A. Dupree,et al.  Hubble Space Telescope Observations of Chromospheres in Metal-Deficient Field Giants , 2007, 0709.1709.

[99]  J. Lawler,et al.  Improved Laboratory Transition Probabilities for Neutral Chromium and Redetermination of the Chromium Abundance for the Sun and Three Stars , 2007, 0707.4603.

[100]  M. Andersson,et al.  Spectral properties of In II from MCDHF calculations , 2007 .

[101]  K. Takahashi,et al.  The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries , 2007, 0705.4512.

[102]  É. Biémont,et al.  Radiative decay from the 7s1/2 level in Pb+ and transition probabilities of astrophysical interest in Pb+ and Bi++ , 2007 .

[103]  H. Walther,et al.  Absolute frequency and isotope shift measurements of the cooling transition in singly ionized indium , 2007 .

[104]  K. Kratz,et al.  Explorations of the r-Processes: Comparisons between Calculations and Observations of Low-Metallicity Stars , 2007, astro-ph/0703091.

[105]  É. Biémont,et al.  Improved atomic data for iridium atom (Ir I) and ion (Ir II) and the solar content of iridium , 2007 .

[106]  I. Ivans,et al.  Improved Laboratory Transition Probabilities for Hf II and Hafnium Abundances in the Sun and 10 Metal-poor Stars , 2007 .

[107]  M. Asplund,et al.  New and improved experimental oscillator strengths in Zr II and the solar abundance of zirconium , 2006 .

[108]  É. Biémont,et al.  Transition probabilities and lifetimes in gold (Au I and Au II) , 2006 .

[109]  Y. Liu,et al.  MCDF calculations for the lowest excited states in the Zn-like sequence , 2006 .

[110]  I. Ivans,et al.  Near-Ultraviolet Observations of HD 221170: New Insights into the Nature of r-Process-rich Stars , 2006, astro-ph/0604180.

[111]  A. Jorissen,et al.  Transition probabilities and lifetimes in neutral and singly ionized osmium and the Solar osmium abundance , 2006 .

[112]  É. Biémont,et al.  Transition probabilities and lifetimes in singly ionized rhenium , 2005 .

[113]  D. Astronomia,et al.  Sulphur abundance in Galactic stars , 2005, astro-ph/0507030.

[114]  F.-J. Zickgraf,et al.  The Hamburg/ESO R-process enhanced star survey (HERES). II. Spectroscopic analysis of the survey sample , 2005, astro-ph/0505050.

[115]  T. Beers,et al.  Hubble Space Telescope Observations of Heavy Elements in Metal-Poor Galactic Halo Stars , 2005 .

[116]  T. Beers,et al.  Improved Laboratory Transition Probabilities for Pt I and Application to the Platinum Abundances of BD +17°3248 and the Sun , 2005 .

[117]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[118]  T. Beers,et al.  Lead abundance in the uranium star CS 31082-001 , 2004, astro-ph/0410628.

[119]  A. Mezzacappa,et al.  Composition of the Innermost Core-Collapse Supernova Ejecta , 2004, astro-ph/0410208.

[120]  H. Lundberg,et al.  Constraining the very heavy elemental abundance peak in the chemically peculiar star χ Lupi, with new atomic data for Os II and Ir II , 2004 .

[121]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. III. Wavelengths Longward of the Lyman Limit for the Elements Hydrogen to Gallium , 2003 .

[122]  C. Sneden,et al.  # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003 .

[123]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[124]  Stephen A. Shectman,et al.  MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[125]  T. Beers,et al.  First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001 - Implications for the r-process site(s) and radioactive cosmochronology , 2002, astro-ph/0203462.

[126]  J. Lawler,et al.  Atomic Transition Probabilities in Tb II with Applications to Solar and Stellar Spectra , 2001 .

[127]  H. Karlsson,et al.  Hyperfine constants, revised wavelengths and energy levels in In I and In II derived by Fourier , 2001 .

[128]  Gang Zhao,et al.  On the Abundance of Potassium in Metal-Poor Stars , 2001, astro-ph/0110165.

[129]  T. Kajino,et al.  The r-Process in Neutrino-driven Winds from Nascent, “Compact” Neutron Stars of Core-Collapse Supernovae , 2001, astro-ph/0102261.

[130]  Zhongshan Li,et al.  Experimental MoII oscillator strengths , 2001 .

[131]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. II. Wavelengths Longward of the Lyman Limit for Heavy Elements , 2000 .

[132]  F. Kupka,et al.  Abundances in Przybylski's star , 2000 .

[133]  H. Karlsson,et al.  Wavelengths and hyperfine constants in Ga I and Ga II derived by Fourier transform spectroscopy , 2000 .

[134]  C. Sneden,et al.  The r-Process-enriched Low-Metallicity Giant HD 115444 , 1999, astro-ph/9910376.

[135]  J. Lawler,et al.  Absolute UV and Vacuum UV Oscillator Strengths for Ni II , 1999 .

[136]  J. Lawler,et al.  Experimental and theoretical radiative lifetimes, branching fractions and oscillator strengths in Lu ii , 1999 .

[137]  M. Busso,et al.  Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures , 1999, astro-ph/9906266.

[138]  E. Träbert,et al.  Measurement of the B+ and Al+ intercombination and Sc12+ forbidden transition rates at a heavy-ion storage ring , 1999 .

[139]  Lee D. Feinberg,et al.  The Space Telescope Imaging Spectrograph Design , 1998 .

[140]  T. Beers,et al.  r-Process Abundances and Chronometers in Metal-poor Stars , 1998, The Astrophysical Journal.

[141]  É. Biémont,et al.  Lifetime calculations in Yb II , 1998 .

[142]  Lee D. Feinberg,et al.  The On-Orbit Performance of the Space Telescope Imaging Spectrograph , 1998, Astronomical Telescopes and Instrumentation.

[143]  B. Meyer,et al.  Survey of r-Process Models , 1997 .

[144]  J. Lawler,et al.  Atomic Data for the Re II UV 1 Multiplet and the Rhenium Abundance in the HgMn-type Star χ Lupi , 1997 .

[145]  J. Pickering,et al.  Measurements of the Hyperfine Structure of Atomic Energy Levels in Co I , 1996 .

[146]  G. Preston,et al.  The Ultra--Metal-poor, Neutron-Capture--rich Giant Star CS 22892-052 , 1996 .

[147]  C. Charbonnel,et al.  A Consistent Explanation for 12C/13C,7Li, and 3He Anomalies in Red Giant Stars , 1995, astro-ph/9511080.

[148]  P. Aufmuth,et al.  Isotope shifts in the W II spectrum , 1995 .

[149]  G. Preston,et al.  Evidence of Heavy Element Nucleosynthesis Early in the History of the Galaxy: The Ultra--metal-poor Star CS 22892-052 , 1995 .

[150]  H. Kronfeldt,et al.  Isotope shift investigations in the configurations 5d9nl and 5d8nln'l' of Pt I , 1995 .

[151]  R. Neugart,et al.  Quadrupole moments and nuclear shapes of neutron-deficient gold isotopes , 1994 .

[152]  G. Preston,et al.  Ultrametal-poor halo stars: The remarkable spectrum of CS 22892-052 , 1994 .

[153]  C. Wahlström,et al.  Comparison of New Experimental and Astrophysical F-values For Some Ru-ii Lines, Observed In Hst Spectra of Chi-lupi , 1994 .

[154]  S. Woosley,et al.  The alpha -Process and the r-Process , 1992 .

[155]  A. Ubelis,et al.  5s25p36s-5s2 5p4 transition probabilities of Te I , 1991 .

[156]  F. Käppeler,et al.  s-process nucleosynthesis-nuclear physics and the classical model , 1989 .

[157]  A. Pickles,et al.  Population studies. I: The Bidelman-MacConnell «weak-metal» stars , 1985 .

[158]  S. Büttgenbach,et al.  Direct measurement of the nuclear magnetic dipole moments of 191Ir and 193Ir by high-precision atomic beam magnetic resonance , 1984 .

[159]  A. Ubelis,et al.  Transition Probability Measurements of Te I Spectral Lines by Methods of Emission and Absorption of Radiation , 1983 .

[160]  P. Hannaford,et al.  Radiative lifetimes and oscillator strengths in neutral iridium , 1983 .

[161]  P. Hannaford,et al.  Radiative lifetimes and branching ratios for the 62P0 levels of gold , 1981 .

[162]  G. Rochester,et al.  The hyperfine structure of 121Sb and 123Sb , 1960 .

[163]  M. Saha On a physical theory of stellar spectra , 1921 .

[164]  Julia J. Bryant,et al.  Ground-based and Airborne Instrumentation for Astronomy VIII , 2021 .

[165]  Pathways to Discovery in Astronomy and Astrophysics for the 2020s , 2021 .

[166]  J. Lawler,et al.  IMPROVED Cr ii log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2017 .

[167]  Ł.M. Sobolewski,et al.  Fine, hyperfine and Zeeman structures of levels of 123Sb I , 2016 .

[168]  E. A. Den Hartog,et al.  IMPROVED V i log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2014 .

[169]  PATHWAYS OF DISCOVERY , 2013 .

[170]  É. Biémont,et al.  Oscillator strengths for lines of astrophysical interest in Rh II , 2012 .

[171]  É. Biémont,et al.  Branching fractions and A values in singly ionized tantalum (Ta II) , 2009 .

[172]  E. A. Den Hartog,et al.  Improved Laboratory Transition Probabilities for Gd II and Application to the Gadolinium Abundances of the Sun and Three r-Process Rich, Metal-poor Stars , 2006 .

[173]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[174]  S. Johansson,et al.  Experimental oscillator strengths in Th II , 2002 .

[175]  S. Johansson,et al.  Experimental oscillator strengths in U II of cosmological interest , 2002 .

[176]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[177]  Christopher Sneden,et al.  Hubble Space Telescope Observations of Neutron-Capture Elements in Very Metal Poor Stars , 1998 .

[178]  L. Holmgren Theoretically Calculated Transition Probabilities and Lifetimes for the First Excited Configuration np2(n + 1)s in the Neutral As, Sb, and Bi Atoms , 1975 .