Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements

Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders.

[1]  Matthias Bernt,et al.  A method for computing an inventory of metazoan mitochondrial gene order rearrangements , 2011, BMC Bioinformatics.

[2]  D. Lavrov,et al.  Extensive and evolutionarily persistent mitochondrial tRNA editing in Velvet Worms (phylum Onychophora). , 2011, Molecular biology and evolution.

[3]  E. Chapman,et al.  Novel protein genes in animal mtDNA: a new sex determination system in freshwater mussels (Bivalvia: Unionoida)? , 2011, Molecular biology and evolution.

[4]  A. Braband,et al.  The mitochondrial genome of the onychophoran Opisthopatus cinctipes (Peripatopsidae) reflects the ancestral mitochondrial gene arrangement of Panarthropoda and Ecdysozoa. , 2010, Molecular phylogenetics and evolution.

[5]  Karri M. Haen,et al.  Parallel loss of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases and mtDNA-encoded tRNAs in Cnidaria. , 2010, Molecular biology and evolution.

[6]  Rob Knight,et al.  Stable tRNA-based phylogenies using only 76 nucleotides. , 2010, RNA.

[7]  H. Seligmann Undetected antisense tRNAs in mitochondrial genomes? , 2010, Biology Direct.

[8]  Nathan C. Sheffield,et al.  Mitochondrial genomics in Orthoptera using MOSAS , 2010, Mitochondrial DNA.

[9]  R. Machida,et al.  Complete mitochondrial genome sequences of the three pelagic chaetognaths Sagitta nagae, Sagitta decipiens and Sagitta enflata. , 2010, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[10]  Michael J. Miller,et al.  Deep-ocean origin of the freshwater eels , 2010, Biology Letters.

[11]  Kimitsuna Watanabe Unique features of animal mitochondrial translation systems , 2010, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[12]  M. Kimmel,et al.  Conflict of interest statement. None declared. , 2010 .

[13]  P. Klimov,et al.  Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites , 2009, BMC Genomics.

[14]  J. Joy,et al.  Evolution of the Mitochondrial Genomes of Gall Midges (Diptera: Cecidomyiidae): Rearrangement and Severe Truncation of tRNA Genes , 2009, Genome biology and evolution.

[15]  D. Söll,et al.  Mitochondrial tRNA import – the challenge to understand has just begun , 2009, Biological chemistry.

[16]  Matthias Bernt,et al.  Finding all sorting tandem duplication random loss operations , 2009, J. Discrete Algorithms.

[17]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[18]  S. Masta,et al.  The first complete mitochondrial genome sequences of Amblypygi (Chelicerata: Arachnida) reveal conservation of the ancestral arthropod gene order. , 2009, Genome.

[19]  Peter F. Stadler,et al.  tRNAdb 2009: compilation of tRNA sequences and tRNA genes , 2008, Nucleic Acids Res..

[20]  L. Marechal-Drouard,et al.  Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria , 2009, Current Genetics.

[21]  Richard Giegé,et al.  Toward a more complete view of tRNA biology , 2008, Nature Structural &Molecular Biology.

[22]  D. Lavrov,et al.  Seventeen New Complete mtDNA Sequences Reveal Extensive Mitochondrial Genome Evolution within the Demospongiae , 2008, PloS one.

[23]  M. Miya,et al.  Monophyly, phylogenetic position and inter-familial relationships of the Alepocephaliformes (Teleostei) based on whole mitogenome sequences. , 2008, Molecular phylogenetics and evolution.

[24]  D. M. Mark Welch,et al.  Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis. , 2008, Molecular biology and evolution.

[25]  J. Boore,et al.  Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. , 2008, Molecular biology and evolution.

[26]  P. Stadler,et al.  Evolution of Mitochondrial Gene Orders in Echinoderms , 2022 .

[27]  D. Lavrov,et al.  The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. , 2008, Gene.

[28]  Björn Canbäck,et al.  ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences , 2008, Bioinform..

[29]  J. Boore,et al.  Multiple origins and rapid evolution of duplicated mitochondrial genes in parthenogenetic geckos (Heteronotia binoei; Squamata, Gekkonidae). , 2007, Molecular biology and evolution.

[30]  D. Lavrov Key transitions in animal evolution: a mitochondrial DNA perspective. , 2007, Integrative and comparative biology.

[31]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[32]  Joern Pütz,et al.  Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures. , 2007, RNA.

[33]  T. Tatusova,et al.  NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2006, Nucleic Acids Research.

[34]  Satish Rao,et al.  On the tandem duplication-random loss model of genome rearrangement , 2006, SODA '06.

[35]  J. Boore,et al.  The mitochondrial genomes of Campodea fragilis and Campodea lubbocki (Hexapoda: Diplura): High genetic divergence in a morphologically uniform taxon. , 2005, Gene.

[36]  R. Zardoya,et al.  A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. , 2005, Molecular biology and evolution.

[37]  J. Boore,et al.  Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. , 2005, Molecular biology and evolution.

[38]  Sam Griffiths-Jones,et al.  RALEE--RNA ALignment Editor in Emacs , 2005, Bioinform..

[39]  D. Wake,et al.  Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Boore,et al.  The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  C. Burridge,et al.  Complete mitochondrial DNA sequence of the Australian freshwater crayfish, Cherax destructor (Crustacea: Decapoda: Parastacidae): a novel gene order revealed. , 2004, Gene.

[42]  J. Boore,et al.  The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. , 2004, Molecular biology and evolution.

[43]  C. Rowell,et al.  The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome , 1995, Journal of Molecular Evolution.

[44]  K. Zhou,et al.  The Mitochondrial Sequences of Heptathela hangzhouensis and Ornithoctonus huwena Reveal Unique Gene Arrangements and Atypical tRNAs , 2004, Journal of Molecular Evolution.

[45]  S. Wyman,et al.  Annotating animal mitochondrial tRNAs: A new scoring scheme and an empirical evaluation of four methods , 2003 .

[46]  R. Bieler,et al.  Changing identities: tRNA duplication and remolding within animal mitochondrial genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Rattray,et al.  The Evolution of tRNA-Leu Genes in Animal Mitochondrial Genomes , 2003, Journal of Molecular Evolution.

[48]  R. Shao,et al.  The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. , 2003, Molecular biology and evolution.

[49]  J. Inoue,et al.  Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. , 2003, Molecular phylogenetics and evolution.

[50]  M. Rattray,et al.  Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. , 2002, Molecular biology and evolution.

[51]  M. Miya,et al.  Complete Mitochondrial DNA Sequence of Tigriopus japonicus (Crustacea: Copepoda) , 2002, Marine Biotechnology.

[52]  Sue A. Olson,et al.  Emboss opens up sequence analysis , 2002, Briefings Bioinform..

[53]  Sue A. Olson,et al.  EMBOSS opens up sequence analysis. European Molecular Biology Open Software Suite. , 2002, Briefings in bioinformatics.

[54]  S. Pääbo,et al.  Evidence for import of a lysyl-tRNA into marsupial mitochondria. , 2001, Molecular biology of the cell.

[55]  Garantizar LA Correcta,et al.  Version 2.0 , 2001 .

[56]  J. Boore,et al.  A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R Giegé,et al.  Search for characteristic structural features of mammalian mitochondrial tRNAs. , 2000, RNA.

[58]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[59]  S. Masta Mitochondrial sequence evolution in spiders: intraspecific variation in tRNAs lacking the TPsiC Arm. , 2000, Molecular biology and evolution.

[60]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[61]  J. Boore The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deu , 2000 .

[62]  J. Boore Animal mitochondrial genomes. , 1999, Nucleic acids research.

[63]  J. Boore,et al.  Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. , 1998, Current opinion in genetics & development.

[64]  A. Janke,et al.  Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenarthra (Edentata) and Ferungulates. , 1997, Molecular biology and evolution.

[65]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[66]  T. Papenfuss,et al.  Replication slippage may cause parallel evolution in the secondary structures of mitochondrial transfer RNAs. , 1997, Molecular biology and evolution.

[67]  S. Pääbo,et al.  RNA editing changes the identity of a mitochondrial tRNA in marsupials. , 1996, The EMBO journal.

[68]  R. Okimoto,et al.  Mitochondrial Genomes of Anthozoa (Cnidaria) , 1995 .

[69]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[70]  R. Okimoto,et al.  Nucleotide correlations that suggest tertiary interactions in the TV-replacement loop-containing mitochondrial tRNAs of the nematodes, Caenorhabditis elegans and Ascaris suum. , 1994, Nucleic acids research.

[71]  J. Boore,et al.  Complete DNA sequence of the mitochondrial genome of the black chiton, Katharina tunicata. , 1994, Genetics.

[72]  B. Lang,et al.  Evolution of the WANCY region in amniote mitochondrial DNA. , 1994, Molecular biology and evolution.

[73]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[74]  D. Sankoff,et al.  Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[75]  A Dress,et al.  How old is the genetic code? Statistical geometry of tRNA provides an answer. , 1989, Science.

[76]  Y. Satta,et al.  Analysis of nucleotide substitutions of mitochondrial DNAs in Drosophila melanogaster and its sibling species. , 1987, Molecular biology and evolution.

[77]  W. Brown,et al.  Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[78]  J. A. Wahleithner,et al.  Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[79]  J. Montoya,et al.  The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units , 1983, Cell.

[80]  W. Ewens,et al.  The chromosome inversion problem , 1982 .

[81]  F. Sanger,et al.  Sequence and organization of the human mitochondrial genome , 1981, Nature.

[82]  B. Barrell,et al.  A mammalian mitochondrial serine transfer RNA lacking the "dihydrouridine" loop and stem. , 1980, Nucleic acids research.

[83]  P. Arcari,et al.  The nucleotide sequence of a small (3S) seryl-tRNA (anticodon GCU) from beef heart mitochondria. , 1980, Nucleic acids research.