Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery

Minimally invasive surgery (MIS) challenges the surgeon's skills due to his/her separation from the operation area, which can be reached with long instruments only. Therefore, the surgeon looses access to the manipulation forces inside the patient. This reduces his/her dexterity when performing the operation. A new compact and lightweight robot for MIS is presented, which allows for the measurement of manipulation forces. The main advantage of this concept is that no miniaturized force sensor has to be integrated into surgical instruments and inserted into the patient. Rather, outside the patient, a standard sensor is attached to a modified trocar, which allows for the undisturbed measurement of manipulation forces. This approach reduces costs and sterilizability demands. Results of in vitro and in vivo force control experiments are presented to validate the concepts

[1]  Tobias Ortmaier,et al.  Cartesian control issues for minimally invasive robot surgery , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[2]  G. Hirzinger,et al.  A 6-Axis Forche/Torque Sensor Design for Haptic Feedback in Minimally Invasive Robotic Surgery , 2003 .

[3]  Bernhard Kübler,et al.  Sensorized and Actuated Instruments for Minimally Invasive Robotic Surgery , 2004 .

[4]  Blake Hannaford,et al.  Kinematic optimization of a spherical mechanism for a minimally invasive surgical robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[5]  Mahdi Tavakoli,et al.  A force reflective master-slave system for minimally invasive surgery , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[6]  Alexandre Krupa,et al.  Achieving high precision laparoscopic manipulation through adaptive force control , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[7]  P Dubois,et al.  [Effect of laparoscopic trocar model on the quality of the movement: experimental study of friction]. , 2004, Gynecologie, obstetrique & fertilite.

[8]  Philippe Cinquin,et al.  LER: the light endoscope robot , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[9]  S. Shankar Sastry,et al.  Robotics for telesurgery: second generation Berkeley/UCSF laparoscopic telesurgical workstation and looking towards the future applications , 2003, Ind. Robot.

[10]  Philippe Poignet,et al.  GEOMETRICAL CONTROL APPROACHES FOR MINIMALLY INVASIVE SURGERY , 2004 .

[11]  Jaydev P. Desai,et al.  Direct 3-D Force Measurement Capability in an Auto- mated Laparoscopic Grasper 1 , 2004 .

[12]  Tobias Ortmaier,et al.  Teleoperation Concepts in Minimal Invasive Surgery , 2001 .

[13]  Tobias Ortmaier,et al.  Motion Compensation in Minimally Invasive Robotic Surgery , 2003 .

[14]  B. Hannaford,et al.  Force controlled and teleoperated endoscopic grasper for minimally invasive surgery-experimental performance evaluation , 1999, IEEE Transactions on Biomedical Engineering.

[15]  John Kenneth Salisbury,et al.  The Intuitive/sup TM/ telesurgery system: overview and application , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[16]  Russell H. Taylor,et al.  Medical robotics in computer-integrated surgery , 2003, IEEE Trans. Robotics Autom..

[17]  Christopher R. Wagner,et al.  The role of force feedback in surgery: analysis of blunt dissection , 2002, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002.

[18]  G. S. Guthart,et al.  The Intuitive Telesurgery System , 2000 .

[19]  Russell H. Taylor,et al.  A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation , 2003, IEEE Trans. Robotics Autom..

[20]  Dong-Soo Kwon,et al.  Microsurgical telerobot system , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[21]  G. Picod,et al.  Influence du type des trocarts utilisés en cœlioscopie sur la qualité du mouvement : étude expérimentale du frottement , 2004 .

[22]  Guillaume Morel,et al.  A passive formulation of force control for kinematically constrained manipulators , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[23]  Patrick Dubois,et al.  In vivo measurement of surgical gestures , 2002, IEEE Transactions on Biomedical Engineering.

[24]  Jaydev P. Desai,et al.  Combining haptic and visual servoing for cardiothoracic surgery , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[25]  Jaydev P. Desai,et al.  Real-Time Haptic Feedback in Laparoscopic Tools for Use in Gastro-Intestinal Surgery , 2002, MICCAI.

[26]  Russell H. Taylor,et al.  Medical Robotic Systems in Computer-Integrated Surgery , 2003 .