Operations research applications of dichotomous search

An object is searched for in {1,⋯,N}. Queries for the object are sequentially conducted. A query at x reveals whether the object’s location is greater than x. The objective is to find the object within a minimal expected number of queries. This problem is called the “dichotomous search” problem and has many versions. This paper surveys dichotomous search problems with the emphasis on Operations Research applications.

[1]  Y. S. Sherif,et al.  Optimal maintenance models for systems subject to failure–A Review , 1981 .

[2]  Biswajit Sarkar,et al.  Product inspection policy for an imperfect production system with inspection errors and warranty cost , 2016, Eur. J. Oper. Res..

[3]  Frances F. Yao,et al.  Speed-Up in Dynamic Programming , 1982 .

[4]  Andrew Chi-Chih Yao,et al.  The complexity of searching an ordered random table , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[5]  Stephen P. Boyd,et al.  Near-optimal depth-constrained codes , 2004, IEEE Transactions on Information Theory.

[6]  Refael Hassin,et al.  An Optimal Algorithm for Finding all the Jumps of a Monotone Step-Function , 1985, J. Algorithms.

[7]  Aharon Ben-Tal,et al.  On Finding the Maximal Range of Validity of a Constrained System , 1978 .

[8]  S H Sheu,et al.  Economic optimization of off-line inspection with inspection errors , 2003, J. Oper. Res. Soc..

[9]  K. J. Overholt Efficiency of the Fibonacci search method , 1973 .

[10]  F. A. Bostock,et al.  A High–Low search game on the unit interval , 1985 .

[11]  Diane J. Reyniers Interactive High-low Search: The Case of Lost Sales , 1989 .

[12]  Richard M. Karp A Generalization of Binary Search , 1993, WADS.

[13]  Lawrence L. Larmore A Subquadratic Algorithm for Constructing Approximately Optimal Binary Search Trees , 1987, J. Algorithms.

[14]  Refael Hassin,et al.  Dichotomous Search for Random Objects on an Interval , 1984, Math. Oper. Res..

[15]  Alfredo De Santis,et al.  On Binary Search Trees , 1993, Inf. Process. Lett..

[16]  Selmer M. Johnson 3. A Search Game , 1964 .

[17]  Chak-Kuen Wong,et al.  Optimal α-β trees with capacity constraint , 2004, Acta Informatica.

[18]  Joel H. Spencer,et al.  Coping with Errors in Binary Search Procedures , 1980, J. Comput. Syst. Sci..

[19]  Alon Itai,et al.  Interpolation search—a log logN search , 1978, CACM.

[20]  Lawrence L. Larmore,et al.  A Parallel Algorithm for Optimum Height-Limited Alphabetic Binary Trees , 1996, J. Parallel Distributed Comput..

[21]  Satoru Murakami A DICHOTOMOUS SEARCH , 1971 .

[22]  Brian Allen On the costs of optimal and near-optimal binary search trees , 2004, Acta Informatica.

[23]  F. Frances Yao,et al.  Efficient dynamic programming using quadrangle inequalities , 1980, STOC '80.

[24]  Gonzalo Navarro,et al.  Binary Searching with Nonuniform Costs and Its Application to Text Retrieval , 2000, Algorithmica.

[25]  Refael Hassin,et al.  Monotonicity and Efficient Computation of Optimal Dichotomous Search , 1993, Discret. Appl. Math..

[26]  L. Carlitz A sorting function , 1971 .

[27]  Russell L. Wessner Optimal Alphabetic Search Trees With Restricted Maximal Height , 1976, Inf. Process. Lett..

[28]  J. McCall Maintenance Policies for Stochastically Failing Equipment: A Survey , 1965 .

[29]  Adriano M. Garsia,et al.  A New Algorithm for Minimum Cost Binary Trees , 1977, SIAM J. Comput..

[30]  Pawel Gawrychowski Alphabetic Minimax Trees in Linear Time , 2013, CSR.

[31]  Shmuel Gal A Stochastic Search Game , 1978 .

[32]  Refael Hassin,et al.  Ranking the Best Binary Trees , 1989, SIAM J. Comput..

[33]  Tobias Jacobs,et al.  On the Huffman and Alphabetic Tree Problem with General Cost Functions , 2010, Algorithmica.

[34]  Michelle L. Wachs On an Efficient Dynamic Programming Technique of F. F. Yao , 1989, J. Algorithms.

[35]  Guihai Chen,et al.  Global Optimization for Multi-Channel Wireless Data Broadcast with AH-Tree Indexing Scheme , 2016, IEEE Transactions on Computers.

[36]  Michael B. Baer,et al.  On Conditional Branches in Optimal Decision Trees , 2006, 2007 IEEE International Symposium on Information Theory.

[37]  T. C. Hu,et al.  Optimal Computer Search Trees and Variable-Length Alphabetical Codes , 1971 .

[38]  B. F. Varn Optimal variable length codes , 1971 .

[39]  S. Murakami A DICHOTOMOUS SEARCH WITH TRAVEL COST , 1976 .

[40]  R. Morris Some Theorems on Sorting , 1969 .

[41]  Shmuel Gal A Discrete Search Game , 1974 .

[42]  Suresh Venkatasubramanian,et al.  Efficient Indexing for Broadcast Based Wireless Systems , 1996, Mob. Networks Appl..

[43]  Eugene Wong,et al.  A Linear Search Problem , 1964 .

[44]  Raymond W. Yeung Alphabetic codes revisited , 1991, IEEE Trans. Inf. Theory.

[45]  Chih-Hsiung Wang,et al.  AN OFFLINE INSPECTION AND DISPOSITION MODEL INCORPORATING DISCRETE WEIBULL DISTRIBUTION AND MANUFACTURING VARIATION , 2008 .

[46]  Diane J. Reyniers A high-low search model of inventories with time delay , 1989 .

[47]  Ruy Luiz Milidiú,et al.  On Binary Searching with Nonuniform Costs , 2002, SIAM J. Comput..

[48]  Jorma Rissanen Bounds for Weight Balanced Trees , 1973, IBM J. Res. Dev..

[49]  Shimon Even,et al.  Efficient Generation of Optimal Prefix Code: Equiprobable Words Using Unequal Cost Letters , 1975, JACM.

[50]  Diane J. Reyniers A Dynamic Model of Collective Bargaining , 1998 .

[51]  Nimrod Megiddo Combinatorial Optimization with Rational Objective Functions , 1979, Math. Oper. Res..

[52]  Richard M. Karp,et al.  Noisy binary search and its applications , 2007, SODA '07.

[53]  Man-tak Shing Optimum Ordered Bi-Weighted Binary Trees , 1983, Inf. Process. Lett..

[54]  David Mun-Hien Choy,et al.  Bounds for optimalα-β binary trees , 1977 .

[55]  J. Abrahams Parallelized Huffman and Hu-Tucker searching , 1994, IEEE Trans. Inf. Theory.

[56]  Eitan Zemel On search over rationals , 1981, Oper. Res. Lett..

[57]  Y. C. Chen,et al.  On a more general formulation of off-line inspection with inspection errors , 2008, J. Oper. Res. Soc..

[58]  Kurt Mehlhorn,et al.  Codes: Unequal Probabilities, Unequal Letter Cost , 1980, JACM.

[59]  Nicola Santoro,et al.  Interpolation-Binary Search , 1985, Inf. Process. Lett..

[60]  Kurt Mehlhorn,et al.  Optimal search for rationals , 2003, Inf. Process. Lett..

[61]  D. Wood,et al.  The construction of optimal multiway search trees and the monotonicity principle , 1981 .

[62]  Refael Hassin A Dichotomous Search for a Geometric Random Variable , 1984, Oper. Res..

[63]  Arne Andersson A note on searching in a binary search tree , 1991, Softw. Pract. Exp..

[64]  Alon Itai,et al.  Optimal Alphabetic Trees , 1976, SIAM J. Comput..

[65]  Scott H. Cameron,et al.  Letter to the Editor-A Search Problem , 1964 .

[66]  W. W. Peterson,et al.  Addressing for Random-Access Storage , 1957, IBM J. Res. Dev..

[67]  Narao Nakatsu,et al.  Bounds on the redundancy of binary alphabetical codes , 1991, IEEE Trans. Inf. Theory.

[68]  Michelle L. Wachs,et al.  Binary Search on a Tape , 1987, SIAM J. Comput..

[69]  Neng-Hui Shih,et al.  Utilizing the information theory of entropy to solve an off-line inspection problem , 2011, 4OR.

[70]  E. N. Gilbert Games of Identification or Convergence , 1962 .

[71]  Diane J. Reyniers Supply decisions for unknown linearly increasing demand , 1989 .

[72]  Kensaku Kikuta,et al.  Open Problems on Search Games , 2013 .

[73]  Robbert Fokkink,et al.  An Asymptotic Solution of Dresher's Guessing Game , 2011, GameSec.

[74]  Yannis Manolopoulos,et al.  Sequential vs. Binary Batched Searching , 1986, Comput. J..

[75]  Peter I. Frazier,et al.  Bisection Search with Noisy Responses , 2013, SIAM J. Control. Optim..

[76]  Chih-Hsiung Wang,et al.  Economic optimization for an off-line inspection, disposition and rework model , 2011, Comput. Ind. Eng..

[77]  Tzvi Raz,et al.  Economic optimization of off-line inspection , 2000 .

[78]  Shey-Huei Sheu,et al.  Economic optimization of off-line inspection with rework consideration , 2009, Eur. J. Oper. Res..

[79]  Arnold L. Rosenberg,et al.  Binary search trees with binary comparison cost , 1984, International Journal of Computer & Information Sciences.

[80]  Cun-Quan Zhang Optimal alphabetic binary tree for a nonregular cost function , 1984, Discret. Appl. Math..

[81]  T. C. Hu,et al.  Optimal alphabetic trees for binary search , 1998 .

[82]  Michael B. Baer,et al.  Alphabetic coding with exponential costs , 2006, Inf. Process. Lett..

[83]  Chak-Kuen Wong,et al.  Construction of Optimal alpha-beta Leaf Trees with Applications to Prefix Code and Information Retrieval , 1983, SIAM J. Comput..

[84]  Sham M. Kakade,et al.  Stochastic Convex Optimization with Bandit Feedback , 2011, SIAM J. Optim..

[85]  Yigal Gerchak,et al.  OPTIMAL INSPECTION ORDER WHEN PROCESS’ FAILURE RATE IS CONSTANT , 1996 .

[86]  Ahmed A. Belal,et al.  Towards a Dynamic Optimal Alphabetic Tree , 1999 .

[87]  Steve Alpern,et al.  A Search Model of Optimal Pricing and Production , 1989 .

[88]  Chih-Hsiung Wang,et al.  Integrated on-line and off-line quality control for products with destructive testing , 2011 .

[89]  J. David Morgenthaler,et al.  Optimal Integer Alphabetic Trees in Linear Time , 2005, ESA.

[90]  Tzvi Raz,et al.  Optimal Parallel Inspection for Finding the First Nonconforming Unit in a Batch--An Information Theoretic Approach , 2000 .

[91]  Aharon Ben-Tal,et al.  A minmax search for the critical level of a system: The asymmetric case , 1985 .

[92]  Refael Hassin,et al.  Asymptotic analysis of dichotomous search with search and travel costs , 1992 .

[93]  Thomas S. Ferguson A Problem in Minimax Estimation With Directional Information , 1996 .

[94]  Hsien-Kuei Hwang,et al.  An asymptotic theory for recurrence relations based on minimization and maximization , 2003, Theor. Comput. Sci..

[95]  Venkatesan Guruswami,et al.  Query strategies for priced information (extended abstract) , 2000, STOC '00.

[96]  Brendan Mumey,et al.  Upper and lower bounds on constructing alphabetic binary trees , 1993, SODA '93.

[97]  Lei Wu,et al.  An exact decomposition algorithm for the generalized knapsack sharing problem , 2016, Eur. J. Oper. Res..

[98]  L. Gotlieb Optimal Multi-Way Search Trees , 1981, SIAM J. Comput..

[99]  E. F. Moore,et al.  Variable-length binary encodings , 1959 .

[100]  J. Kiefer,et al.  Sequential minimax search for a maximum , 1953 .

[101]  J. David Morgenthaler,et al.  Optimal Alphabetic Ternary Trees , 2014, ArXiv.

[102]  Richard M. Karp,et al.  Parallel minimax search for a maximum , 1968 .

[103]  Anis Chelbi,et al.  Inspection Strategies for Randomly Failing Systems , 2009 .

[104]  Young H. Chun,et al.  Bayesian inspection model for the production process subject to a random failure , 2010 .

[105]  Dafna Sheinwald On binary alphabetical codes , 1992, Data Compression Conference, 1992..

[106]  Michael E. Saks,et al.  Set Orderings Requiring Costliest Alphabetic Binary Trees , 1981 .

[107]  Christos H. Papadimitriou Efficient Search for Rationals , 1979, Inf. Process. Lett..

[108]  Sakti Pramanik,et al.  A tree-structured index allocation method with replication over multiple broadcast channels in wireless environments , 2005, IEEE Transactions on Knowledge and Data Engineering.

[109]  Chu Yung-ching An extended result of Kleitman and Saks concerning binary trees , 1985 .

[110]  Young H. Chun Economic optimization of off-line inspection procedures with inspection errors , 2008, J. Oper. Res. Soc..

[111]  Diane Reyniers,et al.  A High-Low Search Algorithm for a Newsboy Problem with Delayed Information Feedback , 1990, Oper. Res..

[112]  Hans W. Gottinger,et al.  On a problem of optimal search , 1977, Math. Methods Oper. Res..

[113]  Prosenjit Bose,et al.  Efficient Construction of Near-Optimal Binary and Multiway Search Trees , 2009, WADS.

[114]  William J. Knight Search in an Ordered Array Having Variable Probe Cost , 1988, SIAM J. Comput..

[115]  Frank K. Hwang,et al.  Isolating a Single Defective Using Group Testing , 1974 .

[116]  David E. Ferguson Fibonaccian searching , 1960, CACM.

[117]  Alan J. Hu Selection of the optimum uniform partition search , 2005, Computing.

[118]  Ruy Luiz Milidiú,et al.  A strategy for searching with different access costs , 2002, Theor. Comput. Sci..

[119]  Wojciech Rytter,et al.  Trees with Minimum Weighted Path Length , 2018, Handbook of Data Structures and Applications.

[120]  T. C. Hu,et al.  BINARY TREES OPTIMUM UNDER VARIOUS CRITERIA , 1979 .

[121]  David A. Spuler,et al.  The optimal binary search tree for Andersson's search algorithm , 1993, Acta Informatica.

[122]  Lirong Cui,et al.  An economic off-line quality control approach for unstable production processes , 2017 .

[123]  T. C. Hu,et al.  Path Length of Binary Search Trees. , 1972 .

[124]  Emilio Ferrara,et al.  Adaptive search over sorted sets , 2015, J. Discrete Algorithms.

[125]  Lawrence L. Larmore,et al.  A Fast Algorithm for Optimum Height-Limited Alphabetic Binary Trees , 1994, SIAM J. Comput..

[126]  Diane J. Reyniers Relative impatience determines preference between contract bargaining and repeated bargaining , 2000, Int. J. Game Theory.

[127]  Lawrence L. Larmore,et al.  The Optimal Alphabetic Tree Problem Revisited , 1994, ICALP.

[128]  Travis Gagie,et al.  A New Algorithm for Building Alphabetic Minimax Trees , 2008, Fundam. Informaticae.

[129]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[130]  Peter Damaschke A Chip Search Problem on Binary Numbers , 1998, LATIN.

[131]  Maria M. Klawe,et al.  Alphabetic Minimax Trees of Degree at Most t , 1986, SIAM J. Comput..

[132]  Yale T. Herer,et al.  Off-line inspections under inspection errors , 2009 .

[133]  J. David Morgenthaler,et al.  Optimum Alphabetic Binary Trees , 1995, Combinatorics and Computer Science.

[134]  Edward M. Reingold,et al.  Optimum lopsided binary trees , 1989, JACM.

[135]  Donald A. Berry,et al.  Discrete Search with Directional Information , 1986, Oper. Res..

[136]  T. C. Hu A New Proof of the T-C Algorithm , 1973 .

[137]  Ferdinando Cicalese,et al.  The binary identification problem for weighted trees , 2012, Theor. Comput. Sci..

[138]  Michael Horstein,et al.  Sequential transmission using noiseless feedback , 1963, IEEE Trans. Inf. Theory.

[139]  Annalisa De Bonis,et al.  Efficient algorithms for chemical threshold testing problems , 2001, Theor. Comput. Sci..

[140]  Ugo Vaccaro,et al.  Binary search with delayed and missing answers , 2003, Inf. Process. Lett..

[141]  F. Warren Burton,et al.  Batched Interpolation Search , 1987, Comput. J..

[142]  Arbee L. P. Chen,et al.  Optimal index and data allocation in multiple broadcast channels , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[143]  Seiichi Nishihara,et al.  Binary Search Revisited: Another Advantage of Fibonacci Search , 1987, IEEE Transactions on Computers.

[144]  Jeffrey H. Kingston A New Proof of the Garsia-Wachs Algorithm , 1988, J. Algorithms.

[145]  Mordecai J. Golin,et al.  Lopsided Trees, I: Analyses , 2001, Algorithmica.

[146]  Steve Alpern Search for point in interval, with high–low feedback , 1985 .

[147]  Kurt Mehlhorn,et al.  A Best Possible Bound for the Weighted Path Length of Binary Search Trees , 1977, SIAM J. Comput..

[148]  Yale T. Herer,et al.  Economic optimization of off-line inspection in a process that also produces non-conforming units when in control and conforming units when out of control , 2009, Eur. J. Oper. Res..

[149]  Karl Hinderer,et al.  Isotonicity of minimizers in polychotomous discrete interval search via lattice programming , 2000, Math. Methods Oper. Res..

[150]  Kuo-Liang Chung,et al.  On the Complexity of Search Algorithms , 1992, IEEE Trans. Computers.

[151]  Avinatan Hassidim,et al.  The Bayesian Learner is Optimal for Noisy Binary Search  (and Pretty Good for Quantum as Well) , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[152]  Steve Alpern Geometric search theory and demand uncertainty , 1989 .

[153]  Shmuel Gal,et al.  The theory of search games and rendezvous , 2002, International series in operations research and management science.

[154]  Jayme Luiz Szwarcfiter Optimal Binary Search Trees with Costs Depending on the Access Paths , 2003, CIAC.

[155]  David G. Kirkpatrick,et al.  Alphabetic Minimax Trees , 1985, SIAM J. Comput..

[156]  K. Hlnderer On dichotomous search with direction-dependent costs for a uniformly hidden object , 1990 .

[157]  Andris Ambainis,et al.  Delayed Binary Search, or Playing Twenty Questions with a Procrastinator , 2001, Algorithmica.

[158]  Chih-Hsiung Wang Economic off-line quality control strategy with two types of inspection errors , 2007, Eur. J. Oper. Res..

[159]  Lev D. Beklemishev,et al.  On the query complexity of finding a local maximum point , 2000, Inf. Process. Lett..

[160]  REFAEL HASSIN,et al.  ON MAXIMIZING FUNCTIONS BY FIBONACCI SEARCH , 2010 .

[161]  M. Hofri,et al.  On Searching an Ordered List : Are Two Yardsticks Better than One ? , 2013 .

[162]  S. Rao Kosaraju,et al.  Comparison-based search in the presence of errors , 1993, STOC.

[163]  Zhang Cun-Quan Optimal alphabetic binary tree for a nonregular cost function , 1984 .

[164]  Tzvi Raz,et al.  Economic optimization of off-line inspection in a process subject to failure and recovery , 2005 .

[165]  IRAD BEN-GAL An upper bound on the weight-balanced testing procedure with multiple testers , 2004 .

[166]  Steve Alpern,et al.  "High-Low Search" in Product and Labor Markets , 1988 .

[167]  Ben Varn,et al.  Optimal Variable Length Codes (Arbitrary Symbol Cost and Equal Code Word Probability) , 1971, Inf. Control..

[168]  J.K. Nelson,et al.  Global Optimization for Multiple Transmitter Localization , 2006, MILCOM 2006 - 2006 IEEE Military Communications conference.

[169]  Frank Schulz Trees with exponentially growing costs , 2008, Inf. Comput..

[170]  Steven Skiena,et al.  Searching on a Tape , 1990, IEEE Trans. Computers.

[171]  S. V. Nagaraj,et al.  Optimal Binary Search Trees , 1997, Theor. Comput. Sci..

[172]  Javed A. Aslam,et al.  Searching in the presence of linearly bounded errors , 1991, STOC '91.

[173]  Diane J. Reyniers Information and rationality asymmetries in a simple high-low search wage model , 1992 .