Modified grasshopper optimization framework for optimal power flow solution

AbstractThis paper proposes a modified grasshopper optimization algorithm (MGOA) to solve the optimal power flow (OPF) problem. The conventional GOA is a recent optimization technique that is conceptualized from the natural lifestyle of grasshopper including their movement and migration. The MGOA is based on modifying the mutation process in the conventional GOA in order to avoid trapping into local optima. Different single- and multi-objective functions are solved using the proposed optimization technique. These objective functions consist of quadratic fuel cost minimization, emission cost minimization, active power loss minimization, quadratic fuel cost and active power loss minimization, quadratic fuel cost minimization and voltage profile improvement, quadratic fuel cost minimization and voltage stability improvement, quadratic fuel cost minimization and emission minimization, quadratic fuel cost and power loss minimization, voltage profile and voltage stability improvement. The proposed technique is validated using standard IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus test systems with thirteen case studies. Simulation results reveal the better performance and superiority of the proposed technique to solve various OPF problems compared with well-recognized evolutionary optimization techniques stated in the literature review.

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[3]  Melanie Mitchell,et al.  Genetic algorithms: An overview , 1995, Complex..

[4]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[5]  Andrew Lewis,et al.  LoCost: A spatial social network algorithm for multi-objective optimisation , 2009, 2009 IEEE Congress on Evolutionary Computation.

[6]  Al-Attar Ali Mohamed,et al.  Optimal power flow using moth swarm algorithm , 2017 .

[7]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[8]  Masaaki Suzuki,et al.  Adaptive Parallel Particle Swarm Optimization Algorithm Based on Dynamic Exchange of Control Parameters , 2016 .

[9]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[10]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[11]  Xin-She Yang,et al.  Swarm Intelligence and Bio-Inspired Computation , 2013 .

[12]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[13]  Yan He,et al.  The Parameters Selection of PSO Algorithm influencing On performance of Fault Diagnosis , 2016 .

[14]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[15]  H. Vrazopoulos,et al.  Evolutionary algorithms with deterministic mutation operators used for the optimization of the trajectory of a four-bar mechanism , 2003, Math. Comput. Simul..

[16]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[17]  Mojtaba Ghasemi,et al.  An improved teaching–learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow , 2015 .

[18]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[19]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[20]  Z. Bingul,et al.  Genetic algorithms applied to real time multiobjective optimization problems , 2000, Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105).

[21]  Andrew Lewis,et al.  Grasshopper Optimisation Algorithm: Theory and application , 2017, Adv. Eng. Softw..

[22]  E. Biscaia,et al.  The use of particle swarm optimization for dynamical analysis in chemical processes , 2002 .

[23]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[24]  Andrew J. Bernoff,et al.  A model for rolling swarms of locusts , 2007, q-bio/0703016.

[25]  Ali Kaveh,et al.  Colliding Bodies Optimization method for optimum discrete design of truss structures , 2014 .

[26]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[27]  Sakti Prasad Ghoshal,et al.  Particle swarm optimization with an aging leader and challengers algorithm for optimal power flow problem with FACTS devices , 2015 .

[28]  Qingfu Zhang,et al.  Enhancing the search ability of differential evolution through orthogonal crossover , 2012, Inf. Sci..

[29]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[30]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[31]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[32]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[33]  Zhihua Cui,et al.  Swarm Intelligence and Bio-Inspired Computation: Theory and Applications , 2013 .

[34]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[35]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[36]  O. Alsac,et al.  Optimal Load Flow with Steady-State Security , 1974 .

[37]  Rajkumar Buyya,et al.  A Particle Swarm Optimization-Based Heuristic for Scheduling Workflow Applications in Cloud Computing Environments , 2010, 2010 24th IEEE International Conference on Advanced Information Networking and Applications.

[38]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[39]  M. A. Abido Environmental/economic power dispatch using multiobjective evolutionary algorithms , 2003 .

[40]  J. Hazra,et al.  A multi‐objective optimal power flow using particle swarm optimization , 2011 .

[41]  K. S. Swarup,et al.  Solving multi-objective optimal power flow using differential evolution , 2008 .

[42]  Ragab A. El-Sehiemy,et al.  Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm , 2016 .

[43]  Kit Po Wong,et al.  Evolutionary programming based optimal power flow algorithm , 1999 .

[44]  R. Venkata Rao,et al.  Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems , 2012, Inf. Sci..

[45]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[46]  Long Li,et al.  Differential evolution based on covariance matrix learning and bimodal distribution parameter setting , 2014, Appl. Soft Comput..

[47]  K. Lee,et al.  A United Approach to Optimal Real and Reactive Power Dispatch , 1985, IEEE Transactions on Power Apparatus and Systems.

[48]  Ali Husseinzadeh Kashan,et al.  An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA) , 2011, Comput. Aided Des..

[49]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[50]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[51]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[52]  E. Prempain,et al.  An improved particle swarm optimization for optimal power flow , 2004, 2004 International Conference on Power System Technology, 2004. PowerCon 2004..

[53]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[54]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[55]  H. Glavitsch,et al.  Estimating the Voltage Stability of a Power System , 1986, IEEE Transactions on Power Delivery.

[56]  K. Swarup,et al.  Sequential quadratic programming based differential evolution algorithm for optimal power flow problem , 2011 .

[57]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[58]  M. Burrows,et al.  Mechanosensory-induced behavioural gregarization in the desert locust Schistocerca gregaria , 2003, Journal of Experimental Biology.

[59]  Vivek Patel,et al.  An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems , 2012 .

[60]  Ali Husseinzadeh Kashan,et al.  League Championship Algorithm: A New Algorithm for Numerical Function Optimization , 2009, 2009 International Conference of Soft Computing and Pattern Recognition.

[61]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[62]  Anupriya Gogna,et al.  Metaheuristics: review and application , 2013, J. Exp. Theor. Artif. Intell..

[63]  Stephen J. Simpson,et al.  A behavioural analysis of phase change in the desert locust , 1999 .

[64]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[65]  K. S. Swarup,et al.  Multi Objective Harmony Search Algorithm For Optimal Power Flow , 2010 .

[66]  A. Karami,et al.  Artificial bee colony algorithm for solving multi-objective optimal power flow problem , 2013 .

[67]  Hirotaka Yoshida,et al.  A PARTICLE SWARM OPTIMIZATION FOR REACTIVE POWER AND VOLTAGE CONTROL CONSIDERING VOLTAGE STABILITY , 2000 .

[68]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[69]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[70]  R D Zimmerman,et al.  MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education , 2011, IEEE Transactions on Power Systems.

[71]  Serhat Duman,et al.  Optimal power flow using gravitational search algorithm , 2012 .

[72]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[73]  Belkacem Mahdad,et al.  Blackout risk prevention in a smart grid based flexible optimal strategy using Grey Wolf-pattern search algorithms , 2015 .