REVIEWS OF TOPICAL PROBLEMS: Channeling of neutral particles in micro- and nanocapillaries

After a brief review of the main areas of research in X-ray optics and an analysis of the development of capillary optics, a general theory of radiation propagation through capil- lary structures is described in both geometrical optics and wave optics approximations. Analysis of the radiation field structure inside a capillary waveguide shows that wave propagation in channels can be of a purely modal nature, with the transmitted energy mostly concentrated in the immediate neighborhood of the capillary inner walls. A qualitative change in radiation scattering with decreasing channel diameter — namely, the transition from surface channeling in microcapillaries to bulk channeling in nanocapillaries — is discussed.

[1]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[2]  A. Akhiezer,et al.  Radiation of relativistic particles in single crystals , 1982 .

[3]  V. Kohn,et al.  REVIEWS OF TOPICAL PROBLEMS: X-ray standing waves---a new method of studying the structure of crystals , 1986 .

[4]  Sultan B. Dabagov,et al.  Peculiarities of photon transmission through capillary systems , 1998 .

[5]  M. Howells,et al.  Whispering galleries for the production of circularly polarized synchrotron radiation in the XUV region , 1994 .

[6]  R. Tatchyn Optimum Zone Plate Theory and Design , 1984 .

[7]  Sultan B. Dabagov,et al.  Divergence behavior due to surface channeling in capillary optics , 2001 .

[8]  Classical nonlinear dynamics and chaos of rays in problems of wave propagation in inhomogeneous media , 1991 .

[9]  P. Ajayan,et al.  Capillarity-induced filling of carbon nanotubes , 1993, Nature.

[10]  Koen Janssens,et al.  Detailed ray‐tracing code for capillary optics , 1995 .

[11]  A. V. Mitin,et al.  Gamma-resonance solid-state spectroscopy under high-frequency excitation conditions , 1976 .

[12]  Svetlana V. Nikitina,et al.  On the interference of X-rays in multiple reflection optics , 1995 .

[13]  M. A. Kumakhov,et al.  Channeling of photons and new X-ray optics , 1990 .

[14]  D. Mildner,et al.  The neutron transmission through a cylindrical guide tube , 1994 .

[15]  S B Dabagov,et al.  Single-reflection regime of X rays that travel into a monocapillary. , 1999, Applied optics.

[16]  Jay S. Pearlman,et al.  Sub-keV x-ray imaging using a low-cost ellipsoidal lens. , 1977, Applied optics.

[17]  Irina Snigireva,et al.  TRANSMISSION AND GAIN OF SINGLY AND DOUBLY FOCUSING REFRACTIVE X-RAY LENSES , 1998 .

[18]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[19]  B. Lengeler,et al.  A microscope for hard x rays based on parabolic compound refractive lenses , 1999 .

[20]  F. Bass,et al.  Wave scattering from statistically rough surfaces , 1979 .

[21]  D. Bilderback,et al.  Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction experiments. , 1994, Science.

[22]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[23]  G. A. Malygin Dislocation self-organization processes and crystal plasticity , 1999 .

[24]  M. W. Thompson The channelling of particles in crystals , 1968 .

[25]  V. Freilikher,et al.  REVIEWS OF TOPICAL PROBLEMS: Localization and wave propagation in randomly layered media , 1990 .

[26]  M. W. Thompson Каналирование частиц в кристаллах , 1969 .

[27]  S. B. Dabagov,et al.  Passage of MeV-energy electrons through monocrystals , 1988 .

[28]  Francesco Cerrina,et al.  SHADOW: A synchrotron radiation and X-ray optics simulation tool , 1994 .

[29]  T. J. Tanaka,et al.  Low-energy x-ray interaction coefficients: Photoabsorption, scattering, and reflection: E = 100–2000 eV Z = 1–94☆ , 1982 .

[30]  V. G. Kohn,et al.  Coherent Phenomenon in Reflection of Radiation by an Uneven Mirror , 1998 .

[31]  A. H. Compton,et al.  X-rays in Theory and Experiment , 1935 .

[32]  P. Persans,et al.  A polycapillary-based X-ray optical system for diffraction applications , 1993 .

[33]  Svetlana V. Nikitina,et al.  Synchrotron radiation focusing by means of Kumakhov lenses , 1994, Optics & Photonics.

[34]  S B Dabagov,et al.  Observation of Interference Effects at the Focus of an X-ray Lens. , 1995, Journal of synchrotron radiation.

[35]  J. Lindhard Влияние кристаллической решетки на движение быстрых заряженных частиц , 1969 .

[36]  Francesco Flora,et al.  Diffraction of X-ray beams in capillary waveguides , 2000 .

[37]  Svetlana V. Nikitina,et al.  Scattered radiation suppression by means of x-ray capillary systems , 1995, Optics & Photonics.

[38]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[39]  B. Dong,et al.  Study of high‐field electron transport in semiconductors using balance equations for nonparabolic multivalley systems , 1996 .

[40]  B. Lengeler,et al.  A compound refractive lens for focusing high-energy X-rays , 1996, Nature.

[41]  Channeling of high energy beams in nanotubes , 2002, physics/0208081.

[42]  M. L. Calvo Neutron fibres: a three-dimensional analysis of bending losses , 2000 .

[43]  V. A. Sharov,et al.  APPLICATION OF CAPILLARY OPTICS TO NEUTRON RADIOGRAPHY , 1998 .

[44]  A. Akhiezer,et al.  Influence of multiple scattering on the radiation of relativistic particles in amorphous and crystalline media , 1987 .

[45]  Carolyn A. MacDonald,et al.  Measurements of polycapillary x-ray optics , 1993 .

[46]  W. Gibson,et al.  Potential for concentration of synchrotron beams with capillary optics , 1994 .

[47]  D. Bilderback,et al.  Applications of single tapered glass capillaries : submicrometer x-ray imaging and Laue diffraction , 1994 .

[48]  V. Letokhov,et al.  Monochromatic γ-radiation emitted by a relativistic electron moving in a carbon nanotube , 1997 .

[49]  Sultan B. Dabagov,et al.  Channeling of neutrons in polycapillaries: a new way to bend neutrons at large angles , 2000, Other Conferences.

[50]  V. A. Bazylev,et al.  Channeling of fast particles and associated phenomena , 1990 .

[51]  A. H. Compton,et al.  CXVII. The total reflexion of X-rays , 1923 .

[52]  Svetlana V. Nikitina,et al.  Interference phenomenon under focusing of synchrotron radiation by a Kumakhov lens , 1996 .

[53]  V. Letokhov,et al.  Hard X-radiation emitted by a charged particle moving in a carbon nanotube , 1996 .

[54]  Y. Yiming,et al.  An investigation of X-ray fluorescence analysis with an X-ray focusing system (X-ray lens) , 1993 .

[55]  Nanotube diameter optimal for channeling of high-energy particle beam , 2002, physics/0205023.

[56]  Alan G. Michette,et al.  Optical Systems for Soft X Rays , 2011, Springer US.

[57]  A. Rindby,et al.  A 200 μm X-ray microbeam spectrometer , 1989 .

[58]  D. Mildner,et al.  Spatial distribution of neutrons guided through a monolithic tapered lens , 1997 .

[59]  F. Komarov,et al.  Radiation from charged particles in solids , 1989 .

[60]  Mitsuo Shoji,et al.  Theoretical consideration of intensity of an x‐ray microbeam formed by a hollow glass pipe , 1993 .

[61]  Mikhail L. Ter-Mikhaelyan REVIEWS OF TOPICAL PROBLEMS: Electromagnetic radiative processes in periodic media at high energies , 2001 .

[62]  K Lieberman,et al.  Simple method for focusing x rays using tapered capillaries. , 1988, Applied optics.

[63]  Richard H. Pantell,et al.  Compound Refractive Lenses for Novel X-ray Sources , 2001 .

[64]  V. A. Bazylev,et al.  Intense electromagnetic radiation from relativistic particles , 1982 .

[65]  W. J. Gallagher,et al.  Laser‐generated plasmas as a source of x rays for medical applications , 1974 .

[66]  J. R. Morris,et al.  Time-dependent propagation of high energy laser beams through the atmosphere , 1976 .

[67]  D H Bilderback,et al.  X-ray Applications with Glass-Capillary Optics. , 1994, Journal of synchrotron radiation.

[68]  Peter D. Persans,et al.  Capillary‐based x‐ray collector/collimator for diffraction applications , 1993 .

[69]  Edward A. Stern,et al.  Submicron concentration and confinement of hard X-rays , 1992 .

[70]  Svetlana V. Nikitina,et al.  Passage of synchrotron radiation through capillary macrosystems , 1995, Optics & Photonics.

[71]  M. N. Yakimenko,et al.  Investigations on the S-60 SR source of the Lebedev Physical Institute , 1995 .

[72]  Muradin A. Kumakhov X-ray capillary optics: history of development and present status , 2000, Other Conferences.

[73]  S. Stephanakis,et al.  X‐ray ’’light pipes’’ , 1976 .

[74]  G. V. Dedkov Fullerene nanotubes can be used when transporting gamma-quanta, neutrons, ion beams and radiation from relativistic particles , 1998 .

[75]  Sergei V. Kukhlevsky,et al.  Pulsed-mode analysis of soft-X-ray radiation passing through capillary waveguides , 1996 .

[76]  Karl F. Voss,et al.  Ray-tracing of X-ray focusing capillaries , 1994 .

[77]  V. A. Murashova,et al.  Coherent and incoherent components of a synchrotron radiation spot produced by separate capillaries. , 2000, Applied optics.

[78]  P. Hirsch,et al.  AN X-RAY MICRO-BEAM TECHNIQUE: I--COLLIMATION , 1951 .

[79]  N. Yamamoto,et al.  Development of an Innovative 5 μmφ Focused X-Ray Beam Energy-Dispersive Spectrometer and its Applications : Materials and Device Structures with Atomic Scale Resolution( Solid State Devices and Materials 1) , 1988 .

[80]  Hans Wolter,et al.  Verallgemeinerte Schwarzschildsche Spiegelsysteme streifender Reflexion als Optiken für Röntgenstrahlen , 1952 .

[81]  R. Bi,et al.  Applications of Polycapillary X-ray Optics in Protein Crystallography , 1998 .

[82]  Per Engström,et al.  A submicron synchrotron x-ray beam generated by capillary optics , 1991 .

[83]  Sultan B. Dabagov,et al.  Divergence of x-ray beams transmitted by capillary structures , 2000, SPIE Optics + Photonics.

[84]  R. Pound,et al.  Gravitational Red-Shift in Nuclear Resonance , 1959 .

[85]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[86]  C A Macdonald,et al.  Applications and measurements of polycapillary x-ray optics. , 1996, Journal of X-ray science and technology.

[87]  L. Marton X‐RAY FIBER OPTICS , 1966 .

[88]  R. A. Silverman,et al.  Wave Propagation in a Turbulent Medium , 1961 .

[89]  Y. Gulyaev,et al.  REVIEWS OF TOPICAL PROBLEMS: Propagation of acoustic surface waves in periodic structures , 1989 .

[90]  F. DiMarcello,et al.  Holey fibers , 2004, The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, 2004. LEOS 2004..

[91]  E. Spiller,et al.  Propagation of x rays in waveguides , 1974 .

[92]  F. Flora,et al.  Diffraction of x rays in capillary optics. , 2000, Applied Optics.

[93]  B. Rohwedder Interference effects in capillary neutron guides , 2002 .

[94]  P. Kirkpatrick,et al.  Formation of optical images by X-rays. , 1948, Journal of the Optical Society of America.

[95]  A. Marcelli,et al.  On propagation of X-rays in capillary channels , 2002 .

[96]  Donald S. Gemmell,et al.  Channeling and related effects in the motion of charged particles through crystals , 1974 .

[97]  M. A. Kumakhov,et al.  Multiple reflection from surface X-ray optics , 1990 .

[98]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[99]  A. Ioffe,et al.  Effective neutron bending at large angles , 1995 .

[100]  V. Glebov,et al.  CHANNELING OF FAST CHARGED AND NEUTRAL PARTICLES IN NANOTUBES , 1998 .

[101]  A. Rindby,et al.  Improved capillary optics applied to microbeam x‐ray fluorescence: Resolution and sensitivity , 1995 .

[102]  Sultan B. Dabagov,et al.  Features of synchrotron radiation focusing by separate capillaries of definite geometry , 1998, Optics & Photonics.

[103]  Reinhard F. Bruch,et al.  New Concepts for X-Ray, Soft X-Ray, and EUV Optical Instrumentation Including Applications in Spectroscopy, Plasma Diagnostics, and Biomedical Microscopy: A Status Report , 1997 .

[104]  R. N. Kuz'min,et al.  REVIEWS OF TOPICAL PROBLEMS: Channeling of neutral particles and photons in crystals , 1992 .

[105]  E. B. Aleksandrov Reviews of Topical Problems: Optical Manifestations of the Interference of Nondegenerate Atomic States , 1973 .

[106]  Reginald W. James,et al.  The Optical principles of the diffraction of X-rays , 1948 .

[107]  Henry A. Rowland Preliminary Notice of the Results Accomplished in the Manufacture and Theory of Gratings for Optical Purposes , 1882 .

[108]  E. A. Sziklas,et al.  Mode calculations in unstable resonators with flowing saturable gain. 2: Fast Fourier transform method. , 1975, Applied optics.

[109]  REVIEWS OF TOPICAL PROBLEMS: Dynamics of high-energy charged particles in straight and bent crystals , 1995 .

[110]  N. S. Ibraimov,et al.  X-ray fluorescence analysis on the base of polycapillary Kumakhov optics , 1999 .

[111]  M. A. Kumakhov,et al.  A neutron lens , 1992, Nature.

[112]  C. Riekel New avenues in x-ray microbeam experiments , 2000 .

[113]  Sultan B. Dabagov,et al.  X-ray channeling in capillary systems , 1995, Optics & Photonics.

[114]  J. C. Kimball,et al.  Surface roughness and the scattering of glancing‐angle x rays: Application to x‐ray lenses , 1993 .

[115]  J. B. Dance,et al.  X-Rays From Laser Plasmas: Generation and Applications , 1998 .

[116]  B. Niemann,et al.  [X-ray microscopy]. , 1984 .

[117]  Sultan B. Dabagov,et al.  Enhancement of optical luminescence of solids using a capillary lens , 2000 .

[118]  J. Golovchenko,et al.  Surface Trapped X Rays: Whispering-Gallery Modes at λ = 0.7 Å , 1997 .