Efficient implementation of adaptive P1-FEM in Matlab

Abstract We provide a MATLAB package p1afem for an adaptive P1-finite element method (AFEM). This includes functions for the assembly of the data, different error estimators, and an indicator-based adaptive meshrefining algorithm. Throughout, the focus is on an efficient realization by use of MATLAB built-in functions and vectorization. Numerical experiments underline the efficiency of the code which is observed to be of almost linear complexity with respect to the runtime. Although the scope of this paper is on AFEM, the general ideas can be understood as a guideline for writing efficient MATLAB code.

[1]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[2]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[3]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[4]  Long Chen,et al.  i FEM : AN INNOVATIVE FINITE ELEMENT METHOD PACKAGE IN MATLAB , 2008 .

[5]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[6]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[7]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[8]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[9]  Hans Rudolf Schwarz,et al.  Finite Element Methods , 1988 .

[10]  Jichun Li,et al.  Computational Partial Differential Equations Using MATLAB , 2008 .

[11]  Mark S. Gockenbach,et al.  Understanding and implementing the finite element method , 1987 .

[12]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[13]  Carsten Carstensen,et al.  Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.

[14]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[15]  Carsten Carstensen,et al.  Elastoviscoplastic Finite Element analysis in 100 lines of Matlab , 2002, J. Num. Math..

[16]  Talal Rahman,et al.  Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements , 2013, Appl. Math. Comput..

[17]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[18]  Carsten Carstensen,et al.  All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..

[19]  E. G. Sewell,et al.  Automatic generation of triangulations for piecewise polynomial approximation , 1972 .

[20]  C. Bahriawati,et al.  Three Matlab Implementations of the Lowest-order Raviart-Thomas Mfem with a Posteriori Error Control , 2005 .

[21]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[22]  Carsten Carstensen,et al.  P2Q2Iso2D = 2D isoparametric FEM in Matlab , 2006 .

[23]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[24]  F. Stenger,et al.  A lower bound on the angles of triangles constructed by bisecting the longest side , 1975 .

[25]  Carsten Carstensen,et al.  An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces , 2004 .

[26]  Chen-Song Zhang,et al.  A COARSENING ALGORITHM ON ADAPTIVE GRIDS BY NEWEST VERTEX BISECTION AND ITS APPLICATIONS , 2010 .

[27]  Carsten Carstensen,et al.  Matlab Implementation of the Finite Element Method in Elasticity , 2002, Computing.

[28]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[29]  Dirk Praetorius,et al.  Estimator Reduction and Convergence of Adaptive FEM and BEM , 2009 .

[30]  Contents , 2020, Neurobiology of Aging.

[31]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .