The Potential of Biologically Active Brazilian Plant Species as a Strategy to Search for Molecular Models for Mosquito Control

Abstract Natural products are a valuable source of biologically active compounds and continue to play an important role in modern drug discovery due to their great structural diversity and unique biological properties. Brazilian biodiversity is one of the most extensive in the world and could be an effective source of new chemical entities for drug discovery. Mosquitoes are vectors for the transmission of dengue, Zika, chikungunya, yellow fever, and many other diseases of public health importance. These diseases have a major impact on tropical and subtropical countries, and their incidence has increased dramatically in recent decades, reaching billions of people at risk worldwide. The prevention of these diseases is mainly through vector control, which is becoming more difficult because of the emergence of resistant mosquito populations to the chemical insecticides. Strategies to provide efficient and safe vector control are needed, and secondary metabolites from plant species from the Brazilian biodiversity, especially Cerrado, that are biologically active for mosquito control are herein highlighted. Also, this is a literature revision of targets as insights to promote advances in the task of developing active compounds for vector control. In view of the expansion and occurrence of arboviruses diseases worldwide, scientific reviews on bioactive natural products are important to provide molecular models for vector control and contribute with effective measures to reduce their incidence.

[1]  D. B. Silva,et al.  Phenolic compounds: antioxidant and larvicidal potential of Smilax brasiliensis Sprengel leaves , 2020 .

[2]  T. Pierson,et al.  The continued threat of emerging flaviviruses , 2020, Nature Microbiology.

[3]  P. Alves,et al.  Chemical composition and biological activities of the essential oils from Vitex-agnus castus, Ocimum campechianum and Ocimum carnosum. , 2020, Anais da Academia Brasileira de Ciencias.

[4]  David J Newman,et al.  Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. , 2020, Journal of natural products.

[5]  L. Espindola,et al.  Dereplication and Isolation of Larvicidal Compounds From Annonaceae Species Against Aedes aegypti , 2020, Revista Brasileira de Farmacognosia.

[6]  Tiago Silva da Costa,et al.  Nano-emulsification Enhances the Larvicidal Potential of the Essential Oil of Siparuna guianensis (Laurales: Siparunaceae) Against Aedes (Stegomyia) aegypti (Diptera: Culicidae) , 2019, Journal of Medical Entomology.

[7]  Yanna C F Teles,et al.  Phytochemical study of Waltheria viscosissima and evaluation of its larvicidal activity against Aedes aegypti , 2019, Revista Brasileira de Farmacognosia.

[8]  Victor Emanuel Pessoa Martins,et al.  Larvicidal and Enzymatic Inhibition Effects of Annona Muricata Seed Extract and Main Constituent Annonacin against Aedes Aegypti and Aedes Albopictus (Diptera: Culicidae) , 2019, Pharmaceuticals.

[9]  L. Bartholomay,et al.  Long-term surveillance defines spatial and temporal patterns implicating Culex tarsalis as the primary vector of West Nile virus , 2018, Scientific Reports.

[10]  Sébastien Charneau,et al.  Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors , 2019, Environmental Science and Pollution Research.

[11]  Denise Brentan Silva,et al.  Phenolic compounds: antioxidant and larvicidal potential of Smilax brasiliensis Sprengel leaves , 2019, Natural product research.

[12]  P. Y. Scaraffia,et al.  Distinctive regulatory properties of pyruvate kinase 1 from Aedes aegypti mosquitoes. , 2019, Insect biochemistry and molecular biology.

[13]  José L. Medina-Franco,et al.  Chemical Space and Diversity of the NuBBE Database: A Chemoinformatic Characterization. , 2018, Journal of chemical information and modeling.

[14]  O. Horstick,et al.  Dengue , 2015, The Lancet.

[15]  Dengue and severe dengue , 2019 .

[16]  Mendes Soares Ilsamar,et al.  Chemical composition, oviposition deterrent and larvicidal activities of the wood extracts of Tabebuia avellanedae from the Cerrado of Brazil , 2018, Journal of Medicinal Plants Research.

[17]  Leonardo G Ferreira,et al.  From Medicinal Chemistry to Human Health: Current Approaches to Drug Discovery for Cancer and Neglected Tropical Diseases. , 2018, Anais da Academia Brasileira de Ciencias.

[18]  W. Tadei,et al.  Bioactivity of Licaria puchury-major Essential Oil Against Aedes aegypti , Tetranychus urticae and Cerataphis lataniae , 2018 .

[19]  V. Pistoia,et al.  The Potential , 2006, The Digital Transformation of Property in Greater China.

[20]  G. Martins,et al.  Larvicidal effect of essential oils from Brazilian cultivars of guava on Aedes aegypti L. , 2017 .

[21]  J. C. Carvalho,et al.  Baccharis reticularia DC. and Limonene Nanoemulsions: Promising Larvicidal Agents for Aedes aegypti (Diptera: Culicidae) Control , 2017, Molecules.

[22]  Adriano D. Andricopulo,et al.  NuBBEDB: an updated database to uncover chemical and biological information from Brazilian biodiversity , 2017, Scientific Reports.

[23]  Leonardo G Ferreira,et al.  From Protein Structure to Small-Molecules: Recent Advances and Applications to Fragment-Based Drug Discovery. , 2017, Current topics in medicinal chemistry.

[24]  J. Andersen,et al.  A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone , 2017, The Journal of Biological Chemistry.

[25]  C. Cardoso,et al.  Screening of plant extracts and fractions on Aedes aegypti larvae found in the state of Mato Grosso do Sul (linnaeus, 1762) (culicidae). , 2017, Anais da Academia Brasileira de Ciencias.

[26]  J. Zanuncio,et al.  Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells. , 2017, Pest management science.

[27]  M. Carvalho,et al.  Composição e atividade larvicida do óleo essencial Eugenia candolleana DC. (MYRTACEAE) contra o Aedes aegypti , 2017 .

[28]  N. Honório,et al.  Larvicidal activity of Ottonia anisum metabolites against Aedes aegypti: A potential natural alternative source for mosquito vector control in Brazil. , 2017, Journal of vector borne diseases.

[29]  L. Menezes,et al.  Repellency and Larvicidal Activity of Essential oils from Xylopia laevigata, Xylopia frutescens, Lippia pedunculosa, and Their Individual Compounds against Aedes aegypti Linnaeus , 2017, Neotropical Entomology.

[30]  S. Asgari,et al.  Downregulation of Aedes aegypti chromodomain helicase DNA binding protein 7/Kismet by Wolbachia and its effect on dengue virus replication , 2016, Scientific Reports.

[31]  W. Garcez,et al.  Larvicidal efficacies of plants from Midwestern Brazil: melianodiol from Guarea kunthiana as a potential biopesticide against Aedes aegypti , 2016, Memorias do Instituto Oswaldo Cruz.

[32]  P. Paiva,et al.  Composition and biological activities of the essential oil of Piper corcovadensis (Miq.) C. DC (Piperaceae). , 2016, Experimental parasitology.

[33]  S. Gualberto,et al.  Toxicological evaluation of essential oil from the leaves of Croton tetradenius (Euphorbiaceae) on Aedes aegypti and Mus musculus , 2016, Parasitology Research.

[34]  A. Act,et al.  Zika Virus Infection in Pregnant Women in Rio de Janeiro - Preliminary Report. , 2016 .

[35]  P. Silva,et al.  Composição química e toxicidade frente Aedes aegypti L. e Artemia salina Leach do óleo essencial das folhas de Myrcia sylvatica (G. Mey. ) DC. , 2016 .

[36]  B. Guy,et al.  Dengue vaccine: hypotheses to understand CYD-TDV-induced protection , 2015, Nature Reviews Microbiology.

[37]  B. Guy,et al.  Development of the Sanofi Pasteur tetravalent dengue vaccine: One more step forward. , 2015, Vaccine.

[38]  M. V. da Silva,et al.  (E)-Caryophyllene and α-Humulene: Aedes aegypti Oviposition Deterrents Elucidated by Gas Chromatography-Electrophysiological Assay of Commiphora leptophloeos Leaf Oil , 2015, PloS one.

[39]  M. Correia,et al.  Chemical Composition and Larvicidal Activity of the Essential Oil from Leaves of Eugenia brejoensis Mazine (Myrtaceae) , 2015 .

[40]  David L. Smith,et al.  The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus , 2015, eLife.

[41]  E. Andrade,et al.  Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae) , 2015, Evidence-based complementary and alternative medicine : eCAM.

[42]  O. Miguel,et al.  Larvicidal activity of Dalbergia brasiliensis ( Fabaceae-Papilionoideae ) on Aedes aegypti , 2015 .

[43]  T. Napoleão,et al.  Effects of Croton rhamnifolioides Essential Oil on Aedes aegypti Oviposition, Larval Toxicity and Trypsin Activity , 2014, Molecules.

[44]  A. Uchôa,et al.  Evaluation of seed extracts from plants found in the Caatinga biome for the control of Aedes aegypti , 2014, Parasitology Research.

[45]  A. Sant'ana,et al.  Evaluation of the toxicity and molluscicidal and larvicidal activities of Schinopsis brasiliensis stem bark extract and its fractions , 2014 .

[46]  S. Cassadou,et al.  Chikungunya in the Americas , 2014, The Lancet.

[47]  E. Guimarães,et al.  Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C. DC. (Piperaceae). , 2013, Pest management science.

[48]  S. Oliveira,et al.  Anonáceas provocam mortalidade em larvas de Aedes aegypti (Linnaeus, 1762) (Diptera:Culicidae) , 2013 .

[49]  A. A. Silva,et al.  Copaifera multijuga ethanolic extracts, oilresin, and its derivatives display larvicidal activity against Anopheles darlingi and Aedes aegypti (Diptera: Culicidae) , 2013 .

[50]  J. D. Fontana,et al.  Synergistic larvicidal effect and morphological alterations induced by ethanolic extracts of Annona muricata and Piper nigrum against the dengue fever vector Aedes aegypti. , 2013, Pest management science.

[51]  John S. Brownstein,et al.  The global distribution and burden of dengue , 2013, Nature.

[52]  N. Ricardo,et al.  Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. , 2013, Parasitology Research.

[53]  N. K. Simas,et al.  Acetylenic 2-phenylethylamides and new isobutylamides from Acmella oleracea (L.) R. K. Jansen, a Brazilian spice with larvicidal activity on Aedes aegypti , 2013 .

[54]  W. Leal,et al.  Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. , 2013, Annual review of entomology.

[55]  E. Guimarães,et al.  Chemical study and larvicidal activity against Aedes aegypti of essential oil of Piper aduncum L. (Piperaceae). , 2013, Anais da Academia Brasileira de Ciencias.

[56]  John Vontas,et al.  Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti , 2012 .

[57]  P. Alves,et al.  Larvicidal Activity against Aedes Aegypti of Essential Oils from Northeast Brazil , 2012, Natural product communications.

[58]  Joon Shin,et al.  Solution structure of FK506‐binding protein 12 from Aedes aegypti , 2012, Proteins.

[59]  P. Gething,et al.  Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus , 2012, PLoS neglected tropical diseases.

[60]  B. M. Christensen,et al.  Evolution of insect arylalkylamine N-acetyltransferases: Structural evidence from the yellow fever mosquito, Aedes aegypti , 2012, Proceedings of the National Academy of Sciences.

[61]  Q. T. Nguyen,et al.  High‐resolution crystal structure of FKBP12 from Aedes aegypti , 2012, Protein science : a publication of the Protein Society.

[62]  A. Santana,et al.  Bioactivity Evaluation of Plant Extracts Used in Indigenous Medicine against the Snail, Biomphalaria glabrata, and the Larvae of Aedes aegypti , 2011, Evidence-based complementary and alternative medicine : eCAM.

[63]  Caroline W. Kabaria,et al.  A global map of dominant malaria vectors , 2012, Parasites & Vectors.

[64]  L. Coelho,et al.  Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae , 2012, Parasitology Research.

[65]  P. Alves,et al.  Chemical Composition and Larvicidal Effects of Essential Oil from Bauhinia acuruana (Moric) against Aedes aegypti , 2011 .

[66]  Dik-Lung Ma,et al.  Molecular docking for virtual screening of natural product databases , 2011 .

[67]  S. Morais,et al.  Toxicity of Brazilian Plant Seed Extracts to Two Strains of Aedes aegypti (Diptera: Culicidae) and Nontarget Animals , 2011, Journal of medical entomology.

[68]  M. Guedes,et al.  Larvicidal Activity of Tagetes erecta Against Aedes aegypti , 2011, Journal of the American Mosquito Control Association.

[69]  C. Saisawang,et al.  Insect glutathione transferases , 2011, Drug metabolism reviews.

[70]  Q. Lan,et al.  In Vivo Functional Genomic Studies of Sterol Carrier Protein-2 Gene in the Yellow Fever Mosquito , 2011, PloS one.

[71]  P. Alves,et al.  Chemical Constituents and Larvicidal Activity of Hymenaea courbaril Fruit Peel , 2010, Natural product communications.

[72]  L. Soares,et al.  Development and Evaluation of Emulsions from Carapa guianensis (Andiroba) Oil , 2010, AAPS PharmSciTech.

[73]  I. M. Vasconcelos,et al.  Water extracts of Brazilian leguminous seeds as rich sources of larvicidal compounds against Aedes aegypti L. , 2010, Anais da Academia Brasileira de Ciencias.

[74]  A. C. Ramos,et al.  The essential oil of Brazilian pepper, Schinus terebinthifolia Raddi in larval control of Stegomyia aegypti (Linnaeus, 1762) , 2010, Parasites & Vectors.

[75]  R. Facanali,et al.  Chemical Composition and Larvicidal Activity against Aedes aegypti Larvae of Essential Oils from Four Guarea Species , 2010, Molecules.

[76]  P. Alves,et al.  A study of the larvicidal activity of two Croton species from northeastern Brazil against Aedes aegypti , 2010, Pharmaceutical biology.

[77]  A. Giulietti,et al.  Larvicidal activity of 94 extracts from ten plant species of northeastern of Brazil against Aedes aegypti L. (Diptera: Culicidae) , 2010, Parasitology Research.

[78]  Woottichai Nachaiwieng,et al.  Expression and Characterization of Three New Glutathione Transferases, an Epsilon (AcGSTE2-2), Omega (AcGSTO1-1), and Theta (AcGSTT1-1) from Anopheles cracens (Diptera: Culicidae), a Major Thai Malaria Vector , 2010, Journal of medical entomology.

[79]  L. Hamerski,et al.  Larvicidal activity against Aedes aegypti of some plants native to the West-Central region of Brazil. , 2009, Bioresource technology.

[80]  R. Pennington,et al.  Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire , 2009, Proceedings of the National Academy of Sciences.

[81]  W. Xu,et al.  Structure of an Odorant-Binding Protein from the Mosquito Aedes aegypti Suggests a Binding Pocket Covered by a pH-Sensitive “Lid” , 2009, PloS one.

[82]  Q. Feng,et al.  The sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCPx) is involved in cholesterol uptake in the midgut of Spodoptera litura: gene cloning, expression, localization and functional analyses , 2009, BMC Molecular Biology.

[83]  A. Coelho,et al.  Atividade Larvicida de Extratos Vegetais sobre Aedes aegypti (L.) (Diptera: Culicidae), em Condições de Laboratório , 2009 .

[84]  L. Kanis,et al.  Larvicidal effect of dried leaf extracts from Pinus caribaea against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). , 2009, Revista da Sociedade Brasileira de Medicina Tropical.

[85]  D. Navarro,et al.  Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). , 2009, Bioresource technology.

[86]  R. Braz-Filho,et al.  Antioxidant and Larvicidal Activities of Tephrosia Egregia Sandw against Aedes Aegypti , 2009, Natural product communications.

[87]  J. Andersen,et al.  Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein , 2009, Proceedings of the National Academy of Sciences.

[88]  A. R. Roel,et al.  [Larvicidal activity of Anacardium humile Saint Hill oil on Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae)]. , 2008, Revista da Sociedade Brasileira de Medicina Tropical.

[89]  L. Costa-Lotufo,et al.  Larvicidal and Nematicidal Activities of the Leaf Essential Oil of Croton regelianus , 2008, Chemistry & biodiversity.

[90]  P. Pelosi,et al.  Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti. , 2008, Biochemical and biophysical research communications.

[91]  P. Alves,et al.  Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. , 2008, Bioresource technology.

[92]  D. Dyer,et al.  Three-dimensional structure/function analysis of SCP-2-like2 reveals differences among SCP-2 family memberss⃞ Published, JLR Papers in Press, December 15, 2007. , 2008, Journal of Lipid Research.

[93]  E. S. Oliveira,et al.  MORTALIDADE E ALTERAÇÕES MORFOLÓGICAS PROVOCADAS PELA AÇÃO INIBIDORA DO DIFLUBENZURON NA ECDISE DE LARVAS DE Aedes aegypti (DIPTERA, CULICIDAE) , 2008 .

[94]  J. Hemingway,et al.  Genomic analysis of detoxification genes in the mosquito Aedes aegypti. , 2008, Insect biochemistry and molecular biology.

[95]  F. E. A. Rodrigues,et al.  Composition and Larvicidal Activity of Essential Oil from Stemodia Maritima L , 2007 .

[96]  Heloísa Helena Garcia da Silva,et al.  ESTUDO DAS ALTERAÇÕES MORFO-HISTOLÓGICASEM LARVAS DE Aedes aegypti (DIPTERA, CULICIDAE) SUBMETIDAS AO EXTRATO BRUTO ETANÓLICO DESapindus saponaria Lin (SAPINDACEAE) , 2007 .

[97]  R. J. Pitts,et al.  Molecular characterization of the Aedes aegypti odorant receptor gene family , 2007, Insect molecular biology.

[98]  P. Brophy,et al.  The Aedes aegypti glutathione transferase family. , 2007, Insect biochemistry and molecular biology.

[99]  A. Sant'Ana,et al.  Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. , 2007, Bioresource technology.

[100]  Minsik Kim,et al.  Identification of two sterol carrier protein‐2 like genes in the yellow fever mosquito, Aedes aegypti , 2007, Insect molecular biology.

[101]  Regina Geris,et al.  Larvicidal activity of oil-resin fractions from the Brazilian medicinal plant Copaifera reticulata Ducke (Leguminosae-Caesalpinoideae) against Aedes aegypti (Diptera, Culicidae). , 2007, Revista da Sociedade Brasileira de Medicina Tropical.

[102]  Scott R. Wilson,et al.  Crystal Structures of Aedes aegypti Alanine Glyoxylate Aminotransferase* , 2006, Journal of Biological Chemistry.

[103]  Juceni P. David,et al.  Metabólitos secundários de espécies de Anacardiaceae , 2006 .

[104]  E. Silveira,et al.  Chemical composition and larvicidal activity of the essential oils of Cordia leucomalloides and Cordia curassavica from the Northeast of Brazil , 2006 .

[105]  H. Santos,et al.  Larvicidal Activity against Aedes Aegypti L. (Diptera: Culicidae) of Essential Oils of Lippia Species from Brazil , 2006 .

[106]  N. Dégallier,et al.  LARVICIDAL ACTIVITY OF SOME CERRADO PLANT EXTRACTS AGAINST AEDES AEGYPTI , 2006, Journal of the American Mosquito Control Association.

[107]  R. Nascimento,et al.  Chemical Composition and Larvicidal Activity of the Essential Oil From Leaves of Cordia globosa (Jacq.) H.B.K. from Northeastern Brazil , 2006 .

[108]  S. Morais,et al.  LARVICIDAL ACTIVITY OF ESSENTIAL OILS FROM BRAZILIAN CROTON SPECIES AGAINST AEDES AEGYPTI L , 2006, Journal of the American Mosquito Control Association.

[109]  Q. Xia,et al.  Molecular cloning and characterization of Bombyx mori sterol carrier protein x/sterol carrier protein 2 (SCPx/SCP2) gene , 2006, DNA sequence : the journal of DNA sequencing and mapping.

[110]  J. G. M. Costa,et al.  Estudo químico-biológico dos óleos essenciais de Hyptis martiusii, Lippia sidoides e Syzigium aromaticum frente às larvas do Aedes aegypti , 2005 .

[111]  A. Sant'Ana,et al.  Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti. , 2005, Fitoterapia.

[112]  J. Hemingway,et al.  Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. , 2005, Insect biochemistry and molecular biology.

[113]  A. Andricopulo,et al.  Structure-activity relationships for the design of small-molecule inhibitors. , 2005, Mini reviews in medicinal chemistry.

[114]  Scott R. Wilson,et al.  Crystal structures of Aedes aegypti kynurenine aminotransferase , 2005, The FEBS journal.

[115]  Q. Lan,et al.  Identification of mosquito sterol carrier protein-2 inhibitorss⃞s⃞ The online version of this article (available at http://www.jlr.org) contains an additional two figures. Published, JLR Papers in Press, January 1, 2005. DOI 10.1194/jlr.M400389-JLR200 , 2005, Journal of Lipid Research.

[116]  A. Enayati,et al.  Insect glutathione transferases and insecticide resistance , 2005, Insect molecular biology.

[117]  J. G. Costa,et al.  Composition and larvicidal activity of essential oils from heartwood of Auxemma glazioviana Taub. (Boraginaceae) , 2004 .

[118]  Q. Lan,et al.  Expression of a sterol carrier protein‐x gene in the Yellow fever mosquito, Aedes aegypti , 2004, Insect molecular biology.

[119]  Q. Lan,et al.  Subcellular localization of the mosquito sterol carrier protein-2 and sterol carrier protein-x Published, JLR Papers in Press, May 16, 2004. DOI 10.1194/jlr.M400003-JLR200 , 2004, Journal of Lipid Research.

[120]  S. Morais,et al.  Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. , 2004, Memorias do Instituto Oswaldo Cruz.

[121]  Q. Lan,et al.  Isolation and expression of a sterol carrier protein‐2 gene from the yellow fever mosquito, Aedes aegypti , 2003, Insect molecular biology.

[122]  Janet Hemingway,et al.  Evolution of Supergene Families Associated with Insecticide Resistance , 2002, Science.

[123]  Peer Bork,et al.  Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster , 2002, Science.

[124]  D. Cortez,et al.  Preliminary evaluation of Kielmeyera coriacea leaves extract on the central nervous system. , 2002, Fitoterapia.

[125]  R. Braz-Filho,et al.  Derris (Lonchocarpus) urucu (Leguminosae) extract modifies the peritrophic matrix structure of Aedes aegypti (Diptera:Culicidae). , 2002, Memorias do Instituto Oswaldo Cruz.

[126]  J. Hemingway,et al.  Mechanisms of DDT and Permethrin Resistance in Aedes aegypti from Chiang Mai, Thailand , 2002 .

[127]  J Hemingway,et al.  Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. , 2001, The Biochemical journal.

[128]  A. McIntosh,et al.  Recent Advances in Membrane Microdomains: Rafts, Caveolae, and Intracellular Cholesterol Trafficking , 2001, Experimental biology and medicine.

[129]  A. Papadopoulos,et al.  The role of glutathione S-transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae). , 2001, Pest management science.

[130]  J. Pennington,et al.  Lipid storage and mobilization in insects: current status and future directions. , 2001, Insect biochemistry and molecular biology.

[131]  U. Seedorf,et al.  Sterol carrier protein-2. , 2000, Biochimica et biophysica acta.

[132]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[133]  B. D. Saúde. Manual de vigilância epidemiológica de Febre Amarela , 1999 .

[134]  P. Jemth,et al.  Phospholipid hydroperoxide glutathione peroxidase activity of human glutathione transferases. , 1998, The Biochemical journal.

[135]  R. Armstrong,et al.  Structure, catalytic mechanism, and evolution of the glutathione transferases. , 1997, Chemical research in toxicology.

[136]  H. L. Lee,et al.  Glutathion S-transferase activity and DDT-susceptibility of Malaysian mosquitos. , 1995, The Southeast Asian journal of tropical medicine and public health.

[137]  L. Gilbert,et al.  Early steps in ecdysteroid biosynthesis: evidence for the involvement of cytochrome P-450 enzymes. , 1993, Insect biochemistry and molecular biology.

[138]  P. Renshaw,et al.  On the nature of dilute aqueous cholesterol suspensions. , 1983, Journal of lipid research.

[139]  W. Nes,et al.  The effects of cholesterol on the development of Heliothis zea , 1981 .