Mechanism of Hydrocarbon Synthesis over Fischer-Tropsch Catalysts

Publisher Summary This chapter discusses the mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts. The superiority of liquid over gaseous energy carriers, in particular for automotive purposes, resides in the high energy density of liquids and the relatively low weight of the required container. When compared to solid fuels such as coal, liquids have the advantage that pollutants can be removed more easily, and transport through pipelines or in tankers is cheap and efficient. The chemistry of the catalytic processes is, of course, independent of the way in which the synthesis gas was manufactured; besides coal gasification the steam re-forming of natural gas is a well-known route to produce synthesis gas, although with a higher H 2 /CO ratio. It is convenient to distinguish methanation, where methane is the predominant product, and the Fischer- Tropsck process directed toward the manufacture of predominantly liquid hydrocarbons. However, as the product composition for a given catalyst largely depends on the conditions, the term Fischer-Tropsck catalysis is used also for those cases in which, owing to the variation of one or more of these parameters, the product is mainly gaseous or solid at room temperature and atmospheric pressure.

[1]  P. A. Jacobs,et al.  Selective Fischer–Tropsch synthesis of hydrocarbons: particle size effect of ruthenium metal in Faujasite-type zeolites , 1979 .

[2]  W. Sachtler,et al.  Catalytic dehydrogenation of propane to propene over platinum and platinum-gold alloys , 1977 .

[3]  M. Dry Advances in Fishcher-Tropsch Chemistry , 1976 .

[4]  F. G. Gault,et al.  Mechanisms of dehydrocyclization on platinum and palladium catalysts , 1972 .

[5]  P. Emmett,et al.  Some mechanism studies on the Fischer-Tropsch synthesis using C14. , 1948, Journal of the American Chemical Society.

[6]  R. Brady,et al.  Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction , 1980 .

[7]  D. Vanhove,et al.  Selective catalytic synthesis of linear paraffins from CO and H2 over cobalt supported catalysts , 1979 .

[8]  R. Ford Carbon Monoxide Adsorption on the Transition Metals , 1970 .

[9]  G. Blyholder,et al.  INFRARED STUDY OF THE INTERACTION OF CARBON MONOXIDE AND HYDROGEN ON SILICA-SUPPORTED IRON , 1962 .

[10]  E. Rideal,et al.  Mechanism of the synthesis of hydrocarbons from water gas , 1939 .

[11]  Alexis T. Bell,et al.  Evidence for H2D2 isotope effects on fischer-tropsch synthesis over supported ruthenium catalysts , 1981 .

[12]  M. Vannice,et al.  The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: II. The kinetics of the methanation reaction over supported metals , 1975 .

[13]  D. Dwyer THE ROLE OF READSORPTION IN DETERMINING THE PRODUCT DISTRIBUTION DURING CO HYDROGENATION OVER Fe SINGLE CRYSTALS , 1979 .

[14]  H. J. Krebs,et al.  Hydrogenation of segregated carbon and adsorbed acetylene on iron , 1980 .

[15]  Par Jean‐Louis Hérisson,et al.  Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques , 1971 .

[16]  M. Poutsma,et al.  Reactions of carbon monoxide and hydrogen on Co, Ni, Ru, and Pd metals , 1978 .

[17]  R. W. Joyner,et al.  Mechanism of hydrocarbon synthesis from carbon monoxide and hydrogen , 1977 .

[18]  A. G. Piken,et al.  Heterogeneous methanation: initial rate of CO hydrogenation on supported ruthenium and nickel , 1974 .

[19]  M. Shelef,et al.  Heterogeneous methanation: In situ infrared spectroscopic study of RuAl2O3 during the hydrogenation of CO , 1977 .

[20]  T. Cole,et al.  Homogeneous catalysts for utilization of synthesis gas as a reducing agent , 1980 .

[21]  V. Ponec,et al.  The Role of Chemisorption of Fischer-Tropsch Synthesis , 1979 .

[22]  M. Thomas,et al.  Metal clusters in catalysis. IV. Catalytic hydrogen reduction of carbon monoxide to alkanes , 1976 .

[23]  G. Bond,et al.  The kinetics and mechanism of carbon monoxide hydrogenation over silica-supported ruthenium-copper catalysts , 1976 .

[24]  H. Wise,et al.  Hydrogenation of surface carbon on alumina-supported nickel , 1979 .

[25]  Michel Boudart,et al.  Kinetics of chemical processes , 1968 .

[26]  F. M. Dautzenberg,et al.  Pulse-technique analysis of the kinetics of the Fischer-Tropsch reaction , 1977 .

[27]  J. Yates,et al.  Kinetics of carbon monoxide hydrogenation on a polycrystalline nickel ribbon catalyst , 1978 .

[28]  D. Trimm,et al.  The kinetics of gasification of carbon deposited on nickel catalysts , 1979 .

[29]  M. Vannice,et al.  Metal-support effects on the activity and selectivity of Ni catalysts in COH2 synthesis reactions , 1979 .

[30]  V. Ponec,et al.  Methanation of carbon monoxide on nickel and nickel-copper alloys , 1976 .

[31]  Paul J. Flory,et al.  Molecular Size Distribution in Linear Condensation Polymers1 , 1936 .

[32]  John G. Ekerdt,et al.  Synthesis of hydrocarbons from CO and H2 over silica-supported Ru: Reaction rate measurements and infrared spectra of adsorbed species , 1979 .

[33]  V. Ponec,et al.  Influence of alloying on the selectivity in Fischer-Tropsch synthesis by nickel-copper alloys , 1978 .

[34]  G. Blyholder,et al.  Infrared study of the adsorption of methanol, ethanol, ether, and water and the interaction of carbon monoxide and hydrogen on a nickel surface , 1963 .

[35]  M. Shelef,et al.  Heterogeneous methanation: Absence of H2D2 kinetic isotope effect on Ni, Ru and Pt , 1977 .

[36]  G. Ertl,et al.  The Nature of the surface chemical bond , 1979 .

[37]  B. Wood,et al.  The role of surface carbon in catalytic methanation , 1976 .

[38]  M. Dry,et al.  Rate of the Fischer-Tropsch reaction over iron catalysts , 1972 .

[39]  F. Fischer,et al.  Über die direkte Synthese von Erdöl‐Kohlenwasserstoffen bei gewöhnlichem Druck. (Erste Mitteilung) , 1926 .

[40]  H. J. Krebs,et al.  On the chemical nature of the carbonaceous deposits on iron after Co hydrogenation , 1980 .

[41]  M. Vannice,et al.  The catalytic synthesis of hydrocarbons from H2CO mixtures over the Group VIII metals: V. The catalytic behavior of silica-supported metals , 1977 .

[42]  R. A. Santen,et al.  Surface Composition and Selectivity of Alloy Catalysts , 1977 .

[43]  H. Storch The Fischer-Tropsch and related syntheses , 1951 .

[44]  H. Matsumoto,et al.  The transient method applied to the methanation and Fischer-Tropsch reactions over a fused iron catalyst , 1978 .

[45]  H. J. Krebs,et al.  A model study of the hydrogenation of CO over polycrystalline iron , 1979 .

[46]  B. Imelik,et al.  Coadsorption of carbon monoxide and hydrogen on a Ni(111) surface: Influence of the “surface carbide” , 1979 .

[47]  H. Storch The Fischer-Tropsch and Related Processes for Synthesis of Hydrocarbons by Hydrogenation of Carbon Monoxide* , 1948 .

[48]  H. Schulz,et al.  New concepts and results concerning the mechanism of carbon monoxide hydrogenation: I. Organic oxygen compounds produced during medium-pressure synthesis with iron catalysts☆☆☆ , 1977 .

[49]  V. Ponec,et al.  The role of carbon in methanation by cobalt and ruthenium , 1979 .

[50]  M. Vannice CATALYTIC SYNTHESIS OF HYDROCARBONS FROM CARBON MONOXIDE AND HYDROGEN , 1976 .

[51]  D. Ollis,et al.  The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals: Comment on methanation kinetics , 1975 .

[52]  K. Aika,et al.  Potassium-dinitrogen-ruthenium complex as an active catalyst for nitrogen fixation , 1979 .

[53]  P. Hansma,et al.  Formation of Hydrocarbons from Carbon Monoxide on Rhodium/Alumina Model Catalysts. , 1980 .

[54]  E. A. Ofstead,et al.  Mechanistische Aspekte der Olefin‐Metathese , 1976 .

[55]  G. Somorjai,et al.  The dehydrogenation and hydrogenolysis of cyclohexane and cyclohexene on stepped (high miller index) platinum surfaces , 1976 .

[56]  H. Pichler Twenty-five Years of Synthesis of Gasoline by Catalytic Conversion of Carbon Monoxide and Hydrogen , 1952 .

[57]  H. Pichler,et al.  Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO und H2 , 1970 .

[58]  Y. Éidus THE MECHANISM OF THE FISCHER–TROPSCH REACTION AND THE INITIATED HYDROPOLYMERISATION OF ALKENES, FROM RADIOCHEMICAL AND KINETIC DATA , 1967 .

[59]  W. Sachtler,et al.  Incorporation of surface carbon into hydrocarbons during Fischer-Tropsch synthesis: Mechanistic implications , 1979 .

[60]  M. Poutsma,et al.  Selective formation of methanol from synthesis gas over palladium catalysts , 1978 .