On the formation of trappable antihydrogen

The formation of antihydrogen atoms from antiprotons injected into a positron plasma is simulated, focussing on the fraction that fulfil the conditions necessary for confinement of anti-atoms in a magnetic minimum trap. Trapping fractions of around 10−4 are found under conditions similar to those used in recent experiments, and in reasonable accord with their results. We have studied the behaviour of the trapped fraction at various positron plasma densities and temperatures and found that collisional effects play a beneficial role via a redistribution of the antihydrogen magnetic moment, allowing enhancements of the yield of low-field seeking states that are amenable to trapping.

[1]  C. J. Baker,et al.  Antihydrogen accumulation for fundamental symmetry tests , 2017, Nature Communications.

[2]  C. J. Baker,et al.  Observation of the hyperfine spectrum of antihydrogen , 2017, Nature.

[3]  C. J. Baker,et al.  Observation of the 1S–2S transition in trapped antihydrogen , 2016, Nature.

[4]  D. P. Werf,et al.  The role of antihydrogen formation in the radial transport of antiprotons in positron plasmas , 2017 .

[5]  A. Zhmoginov,et al.  An improved limit on the charge of antihydrogen from stochastic acceleration , 2016, Nature.

[6]  M. Charlton,et al.  Physics with antihydrogen , 2015 .

[7]  M. Charlton,et al.  Advances in Antihydrogen Physics , 2015, Science progress.

[8]  F. Robicheaux,et al.  Scaling behavior of the ground-state antihydrogen yield as a function of positron density and temperature from classical-trajectory Monte Carlo simulations , 2014 .

[9]  A. Zhmoginov,et al.  An experimental limit on the charge of antihydrogen , 2014, Nature Communications.

[10]  S. Federmann,et al.  A source of antihydrogen for in-flight hyperfine spectroscopy , 2014, Nature Communications.

[11]  John W. V. Storey,et al.  The ALPHA antihydrogen trapping apparatus , 2014 .

[12]  N. Madsen,et al.  Antihydrogen trapping assisted by sympathetically cooled positrons , 2013 .

[13]  J. Wurtele,et al.  Resonant quantum transitions in trapped antihydrogen atoms , 2012, Nature.

[14]  M C George,et al.  Trapped Antihydrogen in Its Ground State , 2012 .

[15]  Berkeley,et al.  Confinement of antihydrogen for 1,000 seconds , 2011, 1104.4982.

[16]  E. A. Hessels,et al.  Adiabatic cooling of antiprotons. , 2011, Physical review letters.

[17]  J. Wurtele,et al.  Search For Trapped Antihydrogen , 2010, 1012.4110.

[18]  Y. Kanai,et al.  Synthesis of cold antihydrogen in a cusp trap. , 2010, Physical review letters.

[19]  J. Wurtele,et al.  Evaporative cooling of antiprotons to cryogenic temperatures. , 2010, Physical review letters.

[20]  J. Wurtele,et al.  Antihydrogen formation dynamics in a multipolar neutral anti-atom trap , 2010, 1002.3036.

[21]  M. Charlton,et al.  Simulation of the formation of antihydrogen in a nested Penning trap: effect of positron density , 2009 .

[22]  F. Robicheaux Atomic processes in antihydrogen experiments: a theoretical and computational perspective , 2008 .

[23]  J. Wurtele,et al.  Compression of antiproton clouds for antihydrogen trapping. , 2008, Physical review letters.

[24]  D. Horvath,et al.  Radial compression of an antiproton cloud for production of intense antiproton beams. , 2008, Physical review letters.

[25]  D. Dubin,et al.  Antihydrogen formation from antiprotons in a pure positron plasma , 2009 .

[26]  F. Robicheaux Three-body recombination for electrons in a strong magnetic field: Magnetic moment , 2006 .

[27]  A. Fontana,et al.  Spatial distribution of cold antihydrogen formation. , 2005, Physical review letters.

[28]  G. Gabrielse Atoms made entirely of antimatter: Two methods produce slow antihydrogen , 2005 .

[29]  M. Charlton,et al.  The route to ultra-low energy antihydrogen , 2004 .

[30]  F. Robicheaux Simulations of antihydrogen formation , 2004 .

[31]  A. Fontana,et al.  Dynamics of antiproton cooling in a positron plasma during antihydrogen formation , 2004 .