Can We Model the Effect of Observed Sea Level Rise on Tides?

The link between secular changes in the lunar semidiurnal ocean tide (M 2 ) and relative sea level rise is examined based on numerical tidal modeling and the analysis of long-term sea level records from Europe, Australia, and the North American Atlantic coasts. The study sets itself apart from previous work by using a 1/12° global tide model that incorporates the effects of self-attraction and loading through time-step-wise spherical harmonic transforms instead of iteration. This novel self-attraction and loading implementation incurs moderate computational overheads (some 50%) and facilitates the simulation of shelf sea tides with a global root mean square error of 14.6 cm in depths shallower than 1,000 m. To reproduce measured tidal changes in recent decades, the model is perturbed with realistic water depth changes, compiled from maps of altimetric sea level trends and postglacial crustal rebound. The M 2 response to the adopted sea level rise scenarios exhibits peak sensitivities in the North Atlantic and many marginal seas, with relative magnitudes of 1-5% per century. Comparisons with a collection of 45 tide gauge records reveals that the model reproduces the sign of the observed amplitude trends in 80% of the cases and captures considerable fractions of the absolute M 2 variability, specifically for stations in the Gulf of Mexico and the Chesapeake-Delaware Bay system. While measured-to-model disparities remain large in several key locations, such as the European Shelf, the study is deemed a major step toward credible predictions of secular changes in the main components of the ocean tide.

[1]  Faïza Boulahya,et al.  Sea-level rise impacts on the tides of the European Shelf , 2017 .

[2]  G. Blewitt,et al.  GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science , 2018 .

[3]  M. Tamisiea,et al.  The moving boundaries of sea level change: understanding the origins of geographic variability , 2011 .

[4]  W. Peltier,et al.  Space-geodetic and water level gauge constraints on continental uplift and tilting over North America: regional convergence of the ICE-6G_C (VM5a/VM6) models , 2017 .

[5]  J. Mitrovica,et al.  Glacial isostatic adjustment and the anomalous tide gauge record of eastern North America , 1996, Nature.

[6]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[7]  S. S. Kristensen,et al.  A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry , 2016 .

[8]  W. Farrell A Discussion on the measurement and interpretation of changes of strain in the Earth - Earth tides, ocean tides and tidal loading , 1973, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[9]  M. Tamisiea,et al.  Ongoing glacial isostatic contributions to observations of sea level change , 2011 .

[10]  G. F. Hall,et al.  A high‐resolution study of tides in the Delaware Bay: Past conditions and future scenarios , 2013 .

[11]  I. Haigh,et al.  Global secular changes in different tidal high water, low water and range levels , 2015 .

[12]  D. Codiga Unified Tidal Analysis and Prediction Using the UTide Matlab Functions , 2011 .

[13]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[14]  M. Hendershott,et al.  The Effects of Solid Earth Deformation on Global Ocean Tides , 1972 .

[15]  Johannes Böhm,et al.  The Global S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_1$$\end{document}1 Tide in Earth’s Nutation , 2016, Surveys in Geophysics.

[16]  J. Böhm,et al.  The global S1 tide and Earth's nutation , 2015 .

[17]  R. Flick,et al.  Trends in United States Tidal Datum Statistics and Tide Range , 2003 .

[18]  J. Green,et al.  Impact of flood defences and sea-level rise on the European Shelf tidal regime , 2014 .

[19]  David A. Jay,et al.  An Analysis of Secular Change in Tides at Open-Ocean Sites in the Pacific , 2014 .

[20]  Gary D. Egbert,et al.  Accuracy assessment of global barotropic ocean tide models , 2014 .

[21]  Chris W. Hughes,et al.  Parameterization of ocean self‐attraction and loading in numerical models of the ocean circulation , 2004 .

[22]  S. Brown,et al.  Adjusting Mitigation Pathways to Stabilize Climate at 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300 , 2018 .

[23]  David Engel The Rotation Of The Earth A Geophysical Discussion , 1961, Geological Magazine.

[24]  R. Kopp,et al.  Probabilistic reanalysis of twentieth-century sea-level rise , 2015, Nature.

[25]  C. Conrad,et al.  Reassessment of 20th century global mean sea level rise , 2017, Proceedings of the National Academy of Sciences.

[26]  D. Jay Evolution of tidal amplitudes in the eastern Pacific Ocean , 2009 .

[27]  J. Kusche,et al.  Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion , 2017, Scientific Reports.

[28]  E. Schrama Three algorithms for the computation of tidal loading and their numerical accuracy , 2005 .

[29]  Bruce Smith,et al.  Climate Change, Mean Sea Level and High Tides in the Bay of Fundy , 2012 .

[30]  J. A. Mattias Green,et al.  Modelling tides and sea-level rise: To flood or not to flood , 2013 .

[31]  M. Eliot,et al.  Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels , 2011 .

[32]  J. Green,et al.  Global Tidal Impacts of Large‐Scale Ice Sheet Collapses , 2017 .

[33]  R. Ray Ocean self‐attraction and loading in numerical tidal models , 1998 .

[34]  Adrian Simmons,et al.  Use of Reduced Gaussian Grids in Spectral Models , 1991 .

[35]  Bruce C. Douglas,et al.  Experiments in Reconstructing Twentieth-Century Sea Levels , 2010 .

[36]  G. Taylor Tidal Oscillations in Gulfs and Rectangular Basins , 1922 .

[37]  C. Garrett,et al.  On tidal resonance in the global ocean and the back‐effect of coastal tides upon open‐ocean tides , 2009 .

[38]  G. Egbert,et al.  Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge , 2006 .

[39]  Malte Müller,et al.  Secular trends in ocean tides: Observations and model results , 2011 .

[40]  Tal Ezer,et al.  Accelerated flooding along the U.S. East Coast: On the impact of sea‐level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations , 2014 .

[41]  Gary D. Egbert,et al.  Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .

[42]  R. DeConto,et al.  Contribution of Antarctica to past and future sea-level rise , 2016, Nature.

[43]  David A. Jay,et al.  Interaction of fluctuating river flow with a barotropic tide: A demonstration of wavelet tidal analysis methods , 1997 .

[44]  J. A. Mattias Green,et al.  Sea level rise and tidal power plants in the Gulf of Maine , 2013 .

[45]  J. A. Mattias Green,et al.  Tides, sea-level rise and tidal power extraction on the European shelf , 2012, Ocean Dynamics.

[46]  Andrew J. Plater,et al.  Book reviewSea-level change: Roger Revelle; Studies in Geophysics, National Research Council, National Academy Press, Washington, DC, 1990; xii + 246 pp.; USD 29.95, GBP 25.75; ISBN 0-309-04039 , 1992 .

[47]  J. Green,et al.  Effects of future sea-level rise on tidal processes on the Patagonian Shelf , 2016 .

[48]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 2, Salinity , 2002 .

[49]  G. Blewitt Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth , 2003 .

[50]  I. Haigh,et al.  Global changes in mean tidal high water, low water and range , 2014 .

[51]  C. Simionato,et al.  Future Sea Level Rise and Changes on Tides in the Patagonian Continental Shelf , 2015 .

[52]  C. Pekeris,et al.  Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[53]  Nathanaël Schaeffer,et al.  Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations , 2012, ArXiv.

[54]  B. Kagan,et al.  The effects of loading and self - attraction on global ocean tides: the model and the results of a n , 1977 .

[55]  J. Hunter,et al.  Towards a global higher‐frequency sea level dataset , 2016 .

[56]  Malte Müller,et al.  The influence of changing stratification conditions on barotropic tidal transport and its implications for seasonal and secular changes of tides , 2012 .

[57]  K. Horsburgh,et al.  The impact of future sea-level rise on the European Shelf tides , 2012 .

[58]  D. Macayeal,et al.  Palaeoclimate: Ocean tides and Heinrich events , 2004, Nature.

[59]  R. Najjar,et al.  Fingerprints of Sea Level Rise on Changing Tides in the Chesapeake and Delaware Bays , 2017 .

[60]  Kevin Horsburgh,et al.  The impact of future sea-level rise on the global tides , 2017 .

[61]  Anny Cazenave,et al.  Sea level: A review of present-day and recent-past changes and variability , 2012 .

[62]  B. Hamlington,et al.  Considerations for estimating the 20th century trend in global mean sea level , 2015 .

[63]  R. Helber,et al.  Optimizing Internal Wave Drag in a Forward Barotropic Model with Semidiurnal Tides , 2015 .

[64]  H. Dobslaw,et al.  Improved modeling of sea level patterns by incorporating self-attraction and loading , 2011 .

[65]  R. Ray Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean , 2009 .

[66]  P. Woodworth A survey of recent changes in the main components of the ocean tide , 2010 .

[67]  J. Green Ocean tides and resonance , 2010 .

[68]  J. Green,et al.  The evolution of tides and tidal dissipation over the past 21,000 years , 2014 .

[69]  A. Cazenave,et al.  A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008 , 2009 .

[70]  H. Kernkamp,et al.  Effects of self-attraction and loading at a regional scale: a test case for the Northwest European Shelf , 2017, Ocean Dynamics.

[71]  M. Tamisiea,et al.  Dynamic Adjustment of the Ocean Circulation to Self-Attraction and Loading Effects , 2015 .

[72]  WangHansheng,et al.  Load Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0 , 2012 .

[73]  D. Jay,et al.  Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution? , 2014, Ocean Dynamics.

[74]  W. Munk,et al.  Tales of the Venerable Honolulu Tide Gauge , 2006 .

[75]  J. Green,et al.  A Comparison of Tidal Conversion Parameterizations for Tidal Models , 2013 .

[76]  Sönke Dangendorfa,et al.  Reassessment of 20 th century global mean sea level rise , 2017 .

[77]  Tidally generated near‐resonant internal wave triads at a shelf break , 2007 .

[78]  Z. Martinec,et al.  Time-domain modeling of global ocean tides generated by the full lunisolar potential , 2017, Ocean Dynamics.

[79]  W. Peltier,et al.  Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model , 2015 .

[80]  L. Jia,et al.  Load Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0 , 2012, Comput. Geosci..