Complete Genome Sequence of Rickettsia typhi and Comparison with Sequences of Other Rickettsiae

ABSTRACT Rickettsia typhi, the causative agent of murine typhus, is an obligate intracellular bacterium with a life cycle involving both vertebrate and invertebrate hosts. Here we present the complete genome sequence of R. typhi (1,111,496 bp) and compare it to the two published rickettsial genome sequences: R. prowazekii and R. conorii. We identified 877 genes in R. typhi encoding 3 rRNAs, 33 tRNAs, 3 noncoding RNAs, and 838 proteins, 3 of which are frameshifts. In addition, we discovered more than 40 pseudogenes, including the entire cytochrome c oxidase system. The three rickettsial genomes share 775 genes: 23 are found only in R. prowazekii and R. typhi, 15 are found only in R. conorii and R. typhi, and 24 are unique to R. typhi. Although most of the genes are colinear, there is a 35-kb inversion in gene order, which is close to the replication terminus, in R. typhi, compared to R. prowazekii and R. conorii. In addition, we found a 124-kb R. typhi-specific inversion, starting 19 kb from the origin of replication, compared to R. prowazekii and R. conorii. Inversions in this region are also seen in the unpublished genome sequences of R. sibirica and R. rickettsii, indicating that this region is a hot spot for rearrangements. Genome comparisons also revealed a 12-kb insertion in the R. prowazekii genome, relative to R. typhi and R. conorii, which appears to have occurred after the typhus (R. prowazekii and R. typhi) and spotted fever (R. conorii) groups diverged. The three-way comparison allowed further in silico analysis of the SpoT split genes, leading us to propose that the stringent response system is still functional in these rickettsiae.

[1]  D. Walker,et al.  The Order Rickettsiales , 2006 .

[2]  S. Takhar Update on emerging infections: news from the Centers for Disease Control and Prevention. Murine typhus--Hawaii, 2002. , 2004, Annals of emergency medicine.

[3]  Josephine C. Adams,et al.  The RickA protein of Rickettsia conorii activates the Arp2/3 complex , 2004, Nature.

[4]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[5]  Robert D. Finn,et al.  The Pfam protein families database , 2004, Nucleic Acids Res..

[6]  L. Touqui,et al.  Identification and characterization of a phospholipase D-superfamily gene in rickettsiae. , 2003, The Journal of infectious diseases.

[7]  Ke Wang,et al.  PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria , 2003, Nucleic Acids Res..

[8]  R. Heinzen Rickettsial Actin‐Based Motility , 2003 .

[9]  G. Valbuena,et al.  Pathogenic Mechanisms of Diseases Caused by Rickettsia , 2003, Annals of the New York Academy of Sciences.

[10]  F. García-Carmona,et al.  Determination of the phospholipase activity of patatin by a continuous spectrophotometric assay , 2003, Lipids.

[11]  Aimee M. Tucker,et al.  S-Adenosylmethionine Transport in Rickettsia prowazekii , 2003, Journal of bacteriology.

[12]  T. Sekizaki,et al.  Adhesive Surface Proteins of Erysipelothrix rhusiopathiae Bind to Polystyrene, Fibronectin, and Type I and IV Collagens , 2003, Journal of bacteriology.

[13]  D. Burns,et al.  Type IV transporters of pathogenic bacteria. , 2003, Current opinion in microbiology.

[14]  M. Babu Did the loss of sigma factors initiate pseudogene accumulation in M. leprae , 2003 .

[15]  A. Azad,et al.  Transcriptional Analysis of Rickettsia prowazekii Invasion Gene Homolog (invA) during Host Cell Infection , 2003, Infection and Immunity.

[16]  R. Heinzen Rickettsial actin-based motility: behavior and involvement of cytoskeletal regulators. , 2003, Annals of the New York Academy of Sciences.

[17]  Maria Jesus Martin,et al.  The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 , 2003, Nucleic Acids Res..

[18]  R. Siam,et al.  Conserved Response Regulator CtrA and IHF Binding Sites in the α-Proteobacteria Caulobacter crescentus and Rickettsia prowazekii Chromosomal Replication Origins , 2002, Journal of bacteriology.

[19]  M. Frith,et al.  A Ubiquitous and Conserved Signal for RNA Localization in Chordates , 2002, Current Biology.

[20]  D. Raoult,et al.  Evaluation of Antibiotic Susceptibilities of Three Rickettsial Species Including Rickettsia felis by a Quantitative PCR DNA Assay , 2002, Antimicrobial Agents and Chemotherapy.

[21]  G. Scherer,et al.  Molecular Identification of Cytosolic, Patatin-Related Phospholipases A from Arabidopsis with Potential Functions in Plant Signal Transduction1 , 2002, Plant Physiology.

[22]  A. Azad,et al.  The Rickettsia prowazekii Invasion Gene Homolog (invA) Encodes a Nudix Hydrolase Active on Adenosine (5′)-pentaphospho-(5′)-adenosine* , 2002, Molecular & Cellular Proteomics.

[23]  R. Kahn,et al.  A Bacterial Guanine Nucleotide Exchange Factor Activates ARF on Legionella Phagosomes , 2002, Science.

[24]  D. Kelly,et al.  The prokaryotes: an evolving electronic resource for the microbiological community - , 2002 .

[25]  A. Czogalla,et al.  Ankyrins, multifunctional proteins involved in many cellular pathways. , 2002, Folia histochemica et cytobiologica.

[26]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: 2002 update , 2002, Nucleic Acids Res..

[27]  Jack A. M. Leunissen,et al.  EXProt: a database for proteins with an experimentally verified function , 2002, Nucleic Acids Res..

[28]  V. Mizrahi,et al.  Characterization of thecydAB-Encoded Cytochrome bd Oxidase fromMycobacterium smegmatis , 2001, Journal of bacteriology.

[29]  J. Weissenbach,et al.  Mechanisms of Evolution in Rickettsia conorii and R. prowazekii , 2001, Science.

[30]  J. Andersson,et al.  Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. , 2001, Molecular biology and evolution.

[31]  D. Chatterji,et al.  Revisiting the stringent response, ppGpp and starvation signaling. , 2001, Current opinion in microbiology.

[32]  R. Gunsalus,et al.  Interplay between three global regulatory proteins mediates oxygen regulation of the Escherichia coli cytochrome d oxidase (cydAB) operon , 2000, Molecular microbiology.

[33]  S. Hapfelmeier,et al.  VirB6 Is Required for Stabilization of VirB5 and VirB3 and Formation of VirB7 Homodimers in Agrobacterium tumefaciens , 2000, Journal of bacteriology.

[34]  C. L. Jackson,et al.  Regulators and effectors of the ARF GTPases. , 2000, Current opinion in cell biology.

[35]  R. Heinzen,et al.  Ultrastructure of Rickettsia rickettsiiActin Tails and Localization of Cytoskeletal Proteins , 2000, Infection and Immunity.

[36]  J. Fergie,et al.  Murine typhus in South Texas children , 2000, The Pediatric infectious disease journal.

[37]  C. L. Jackson,et al.  Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. , 2000, Trends in cell biology.

[38]  J. Andersson,et al.  Insights into the evolutionary process of genome degradation. , 1999, Current opinion in genetics & development.

[39]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[40]  A. Azad,et al.  Identification and Molecular Analysis of the Gene Encoding Rickettsia typhi Hemolysin , 1999, Infection and Immunity.

[41]  D. Burns,et al.  Biochemistry of type IV secretion. , 1999, Current opinion in microbiology.

[42]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[43]  I. Henderson,et al.  The great escape: structure and function of the autotransporter proteins. , 1998, Trends in microbiology.

[44]  C. Kurland,et al.  Reductive evolution of resident genomes. , 1998, Trends in microbiology.

[45]  Han Li,et al.  rOmpA is a critical protein for the adhesion of Rickettsia rickettsii to host cells. , 1998, Microbial pathogenesis.

[46]  C. Beard,et al.  Rickettsial pathogens and their arthropod vectors. , 1998, Emerging infectious diseases.

[47]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[48]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[49]  M. Borodovsky,et al.  GeneMark.hmm: new solutions for gene finding. , 1998, Nucleic acids research.

[50]  L. Shapiro,et al.  Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[52]  S. Zaki,et al.  Immunohistochemical diagnosis of typhus rickettsioses using an anti-lipopolysaccharide monoclonal antibody. , 1997, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[53]  A. Azad,et al.  Flea-borne rickettsioses: ecologic considerations. , 1997, Emerging infectious diseases.

[54]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[55]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[56]  J. Baxter The typhus group. , 1996, Clinics in dermatology.

[57]  R A Gibbs,et al.  A "double adaptor" method for improved shotgun library construction. , 1996, Analytical biochemistry.

[58]  M. Cashel,et al.  Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation , 1996, Molecular microbiology.

[59]  M. Cashel,et al.  The stringent response , 1996 .

[60]  J. H. Parish,et al.  Cloning and sequence analysis of an Escherichia coli gene conferring bicyclomycin resistance. , 1993, Gene.

[61]  K. Lewis,et al.  Emr, an Escherichia coli locus for multidrug resistance. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[62]  B A Stocker,et al.  A Salmonella typhimurium virulence gene linked to flg , 1989, Infection and immunity.

[63]  A. Tamura,et al.  [Comparison of in vitro susceptibilities of Rickettsia prowazekii, R. rickettsii, R. sibirica and R. tsutsugamushi to antimicrobial agents]. , 1989, Nihon saikingaku zasshi. Japanese journal of bacteriology.

[64]  J. Taylor,et al.  Histopathology and immunohistologic demonstration of the distribution of Rickettsia typhi in fatal murine typhus. , 1989, American journal of clinical pathology.

[65]  W. Burgdorfer,et al.  Rickettsiae and rickettsial diseases , 1981 .

[66]  J. Williams,et al.  Separation of viable Rickettsia typhi from yolk sac and L cell host components by renografin density gradient centrifugation. , 1975, Applied microbiology.

[67]  W. Burgdorfer,et al.  Plaque Formation in Tissue Cultures by Rickettsia rickettsi Isolated Directly from Whole Blood and Tick Hemolymph , 1972, Infection and immunity.

[68]  M. Demerec,et al.  A proposal for a uniform nomenclature in bacterial genetics. , 1966, Journal of general microbiology.

[69]  J. C. Snyder,et al.  THE INFLUENCE OF CERTAIN SALTS, AMINO ACIDS, SUGARS, AND PROTEINS ON THE STABILITY OF RICKETTSIAE , 1950, Journal of bacteriology.