Isolation of New Symbiodinium Strains from Tridacnid Giant Clam (Tridacna crocea) and Sea Slug (Pteraeolidia ianthina) Using Culture Medium Containing Giant Clam Tissue Homogenate

Recent molecular biological studies have revealed that some photosymbiotic invertebrates dwelling in coral reefs host several genetically different dinoflagellates, Symbiodinium species, as symbionts. However, little is known about the difference in physiologic characteristics among these symbionts living in a single host, because some Symbiodinium strains are difficult to culture in vitro. To isolate some of these Symbiodinium strains, we have developed an agar culture medium plate containing antibiotics and a giant clam tissue homogenate. Using-this medium we isolated two new Symbiodinium strains from two molluscan hosts, Tridacna crocea and Pteraeolidia ianthina, each of which hosted two different Symbiodinium strains belonging to Symbiodinium C and D, respectively. The tissue homogenate was essential for the growth of Symbiodinium D. Although it was not essential for the growth of Symbiodinium C, it did stimulate the initial growth. For the isolation of some Symbiodinium strains, isolation medium containing host homogenate is effective.

[1]  T. Maruyama,et al.  CONSPECIFICITY AND INDO‐PACIFIC DISTRIBUTION OF SYMBIODINIUM GENOTYPES (DINOPHYCEAE) FROM GIANT CLAMS , 2000 .

[2]  S. R. Santos,et al.  GENETIC COMPARISONS OF FRESHLY ISOLATED VERSUS CULTURED SYMBIOTIC DINOFLAGELLATES: IMPLICATIONS FOR EXTRAPOLATING TO THE INTACT SYMBIOSIS , 2001 .

[3]  Todd C. LaJeunesse,et al.  Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs , 2002 .

[4]  N. Knowlton,et al.  Intraspecific diversity and ecological zonation in coral-algal symbiosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Powers,et al.  Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae) , 1991 .

[6]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[7]  R. Hill,et al.  Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile , 2001, Applied and Environmental Microbiology.

[8]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[9]  J. H. Ryther,et al.  Studies of marine planktonic diatoms , 1962 .

[10]  R. Trench,et al.  Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of Symbiodinium microadriaticum , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  R. Rowan,et al.  REVIEW—DIVERSITY AND ECOLOGY OF ZOOXANTHELLAE ON CORAL REEFS , 1998 .

[12]  M. Kawachi,et al.  PHYLOGENETIC POSITION OF SYMBIODINIUM (DINOPHYCEAE) ISOLATES FROM TRIDACNIDS (BIVALVIA), CARDIIDS (BIVALVIA), A SPONGE (PORIFERA), A SOFT CORAL (ANTHOZOA), AND A FREE‐LIVING STRAIN , 1999 .

[13]  James M. Pflug,et al.  Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. , 2002, Molecular phylogenetics and evolution.

[14]  X. Pochon,et al.  Molecular Identification of Algal Endosymbionts in Large Miliolid Foraminifera: 2. Dinoflagellates , 2001, The Journal of eukaryotic microbiology.

[15]  A. Banaszak,et al.  The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates. , 2000, Journal of experimental marine biology and ecology.

[16]  D. Powers,et al.  A Molecular Genetic Classification of Zooxanthellae and the Evolution of Animal-Algal Symbioses , 1991, Science.

[17]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[18]  N. Knowlton,et al.  Landscape ecology of algal symbionts creates variation in episodes of coral bleaching , 1997, Nature.

[19]  N. Knowlton,et al.  Zooxanthellae of the Montastraea annularis Species Complex: Patterns of Distribution of Four Taxa of Symbiodinium on Different Reefs and Across Depths , 2001, The Biological Bulletin.

[20]  D. Powers,et al.  Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Baker Ecosystems: Reef corals bleach to survive change , 2001, Nature.

[22]  L. Maroteaux,et al.  Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. Qian,et al.  Effects of food availability on larval development in the slipper limpet Crepidula onyx (Sowerby) , 2003 .

[24]  J. Pawlowski,et al.  High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans , 2001 .

[25]  T. Maruyama,et al.  Diversity of dinoflagellate symbionts (zooxanthellae) in a host individual , 2000 .

[26]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[27]  T. Lajeunesse INVESTIGATING THE BIODIVERSITY, ECOLOGY, AND PHYLOGENY OF ENDOSYMBIOTIC DINOFLAGELLATES IN THE GENUS SYMBIODINIUM USING THE ITS REGION: IN SEARCH OF A “SPECIES” LEVEL MARKER , 2001 .