Modelling of Metal Oxide Surge Arresters in Simulation Software DYNAST

This paper describes the possibilities for mathematical modelling of gap-less surge arresters in the simulation software DYNAST. This tool does not belong to standard modelling softwares in the field of electric power engineering. However, it may provide some key advantages when compared to more frequently used software such as EMTP-ATP and MATLAB-Simulink. Description of the metal oxide varistor modelling at temporary and switching overvoltages, fast-front states, and lightning strokes is presented. More information about the defined internal structure of the surge arrester models and ways for implementing respective V-I characteristics are provided. To verify the correct behaviour of the models, both slow and fast overvoltage scenarios are simulated and evaluated.

[1]  S. Tominaga,et al.  Protective Performance of Metal Oxide Surge Arrester Based on the Dynamic V-I Characteristics , 1979, IEEE Transactions on Power Apparatus and Systems.

[2]  Toshihisa Funabashi,et al.  Study of ZnO arrester model for steep front wave , 1996 .

[3]  H. Elahi,et al.  Modeling guidelines for fast front transients , 1996 .

[4]  P. Pinceti,et al.  A simplified model for zinc oxide surge arresters , 1999 .

[5]  G. C. Paap,et al.  Application of a New Surge Arrester Model in Protection Studies Concerning Switching Surges , 2001 .

[6]  F. Fernandez,et al.  Metal-oxide surge arrester model for fast transient simulations , 2001 .

[7]  L. van der Sluis,et al.  PES Digital Library , 2002, IEEE Power Engineering Review.

[8]  Tapan Kumar Saha,et al.  A Simplified Lightning Model for Metal Oxide Surge Arrester , 2002 .

[9]  Noureddine Harid,et al.  Simulation of metal oxide surge arrester dynamic behavior under fast transients , 2003 .

[10]  C.A. Christodoulou,et al.  Simulation of metal oxide surge arresters behavior , 2008, 2008 IEEE Power Electronics Specialists Conference.

[11]  Slavko Vujević,et al.  Comparison of different metal oxide surge arrester models , 2011 .

[12]  S. Dau,et al.  Modelling of metal oxide surge arresters as elements of overvoltage protection systems , 2012, 2012 International Conference on Lightning Protection (ICLP).

[13]  Rafael Amaral Shayani,et al.  Comparison of metal oxide surge arrester models in overvoltage studies , 2012 .

[14]  B. Baron,et al.  Self inductance of long conductor of rectangular cross section , 2012 .

[15]  Shehab Abdulwadood Design of Lightning Arresters for Electrical Power Systems Protection , 2013 .

[16]  Pablo Mourente Miguel Comparison of Surge Arrester Models , 2014, IEEE Transactions on Power Delivery.

[17]  Mohammad Mirzaie,et al.  Application of finite element method for electro‐thermal modeling of metal oxide surge arrester , 2015, Comput. Appl. Eng. Educ..

[18]  Tvorba modelovacích analytických nástrojů v oboru elektroenergetiky s důrazem na oblast spolehlivosti a provozu venkovních vedení , 2016 .