Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors

Kyle J. Gaulton | Peter K. Joshi | Sara M. Willems | Samuel E. Jones | David M. Evans | K. Lunetta | J. Murabito | A. Hofman | A. Uitterlinden | T. Spector | I. Ntalla | K. Hao | M. McCarthy | E. Zeggini | A. Morris | D. Lawlor | T. Lehtimäki | H. Hakonarson | X. Estivill | S. Grant | T. Hansen | O. Pedersen | N. Grarup | D. Torrents | Z. Kutalik | J. Tyrrell | Po-Ru Loh | S. Ring | T. Frayling | R. Freathy | J. Perry | B. Shields | M. Weedon | A. Hattersley | N. W. Rayner | N. Timpson | Y. Teo | J. Viikari | M. Kogevinas | C. Marsit | M. Vrijheid | L. Chatzi | A. Vaag | O. Raitakari | F. Rivadeneira | T. Ahluwalia | K. Bønnelykke | H. Bisgaard | N. Warrington | G. Willemsen | E. D. de Geus | D. Scholtens | G. Montgomery | K. Mohlke | J. Bradfield | R. Rueedi | T. Lakka | D. Boomsma | M. Stumvoll | H. Inskip | N. Wareham | J. Heinrich | M. Horikoshi | A. Mahajan | V. Lagou | L. Marullo | J. Hottenga | E. Hyppönen | M. Müller-Nurasyid | E. V. van Leeuwen | C. V. van Duijn | J. Eriksson | C. Power | M. Järvelin | I. Prokopenko | P. Marques‐Vidal | D. Hougaard | S. Medland | A. V. van Kampen | H. Kadarmideen | J. Mercader | B. Knight | P. Njølstad | K. Ong | A. Bennett | N. Robertson | D. Evans | B. Jacobsson | P. Joshi | P. Lind | R. Myhre | H. Campbell | G. Dedoussis | M. Kähönen | P. Vollenweider | E. Widén | James F. Wilson | S. Saw | Jin-Fang Chai | J. Luan | R. Scott | C. Langenberg | F. Rosendaal | D. Mook-Kanamori | C. Have | T. Sørensen | A. Wood | M. Atalay | L. Lyytikäinen | Ying Wu | L. Adair | G. Davey Smith | M. Bartels | F. Day | T. Vrijkotte | L. Muglia | A. Linneberg | K. Michaelsen | V. Jaddoe | C. Duijn | B. V. van Schaik | L. Beilin | P. Kovacs | A. Tönjes | M. Hayes | G. Hemani | B. Feenstra | C. Medina-Gomez | F. Geller | J. Murray | S. Sebert | M. Melbye | E. V. Appel | Ø. Helgeland | S. Johansson | R. Li-Gao | C. Pennell | K. Ruth | Carol A. Wang | H. Yaghootkar | E. Thiering | E. D. Geus | A. Cavadino | H. Mbarek | R. Beaumont | M. Tuke | A. Murray | C. Relton | M. Nodzenski | Shouneng Peng | J. Painter | M. Murcia | R. Joro | M. Standl | W. Lowe | J. Holloway | N. Vilor-Tejedor | J. Bacelis | Ge Zhang | F. Mentch | D. Cousminer | K. Panoutsopoulou | E. M. Leeuwen | J. Fernández-Tajes | J. Felix | A. Körner | W. Kiess | M. Bustamante | M. Hivert | N. V. van Zuydam | W. Ang | L. Paternoster | E. Nøhr | Marc Vaudel | Jia Chen | J. Holm | J. Stokholm | J. Stokholm | B. Chawes | R. Vinding | C. Reichetzeder | B. Hocher | C. Pisinger | K. Schraut | M. Zafarmand | R. Richmond | S. Metrustry | Sílvia Bonàs-Guarch | F. Sánchez | H. Niinikoski | N. Zuydam | C. E. V. van Beijsterveldt | N. Pitkänen | S. Barton | V. Huikari | J. Marsh | K. Pahkala | H. D. de Haan | M. Kooijman | C. Laurin | C. E. Fonvig | C. Trier | J. Borja | C. Allard | A. Espinosa | L. Bouchard | Shikta Das | Jani Heikkinen | L. Santa-Marina | Jing Hua Zhao | J. Eriksson | T. Schnurr | C. S. Morgen | A. Eloranta | M. Vaudel | J. Tyrrell | Z. Qiao | Gunn-Helen Øiseth Moen | G. Moen | O. Raitakari | G. D. Smith | Katharina E. Schraut | B. Jacobsson | K. Gaulton | C. Fonvig | S. Jones | Barbera D. C. Schaik | Po-ru Loh | P. Marques-Vidal | Catharina E. M. van Beijsterveldt | Thorkild I. A. Sørensen | D. Lawlor | Joachim Heinrich | Marjolein N. Kooijman | M. Murcia | Andrew P Morris | Zhen Qiao | M. Kähönen | J. Eriksson | A. Uitterlinden | R. Scott | David M. Evans | A. Kampen | A. Hofman | J. Perry | D. Boomsma | Ying Wu | R. Scott | Elina Hyppönen | M. McCarthy | H. G. D. Haan | Ana Espinosa | R. Scott | Ying Wu | T. Hansen | F. Sánchez | Olli T. Raitakari | M. McCarthy | Ronny Myhre | T. I. Sørensen | Catherine Allard | Charles Laurin | Friman Sánchez | A. Murray | Aino-Maija Eloranta | Ruifang Li-Gao | S. Bonàs-Guarch

[1]  J. Priest,et al.  Birthweight, Type 2 Diabetes and Cardiovascular Disease: Addressing the Barker Hypothesis with Mendelian randomization , 2017, bioRxiv.

[2]  C. Osmond,et al.  Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth , 2004, Diabetologia.

[3]  Evan Z. Macosko,et al.  Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types , 2017, Nature Genetics.

[4]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[5]  B. Shields,et al.  Evidence of genetic regulation of fetal longitudinal growth. , 2005, Early human development.

[6]  R. Collins,et al.  Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? , 2002, The Lancet.

[7]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[8]  Stefan Johansson,et al.  Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis , 2015, PLoS medicine.

[9]  P. Andersen,et al.  Birth weight and systolic blood pressure in adolescence and adulthood: meta-regression analysis of sex- and age-specific results from 20 Nordic studies. , 2007, American journal of epidemiology.

[10]  David M. Evans,et al.  Using structural equation modelling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank , 2018, International journal of epidemiology.

[11]  Evangelos Evangelou,et al.  Heterogeneity in Meta-Analyses of Genome-Wide Association Investigations , 2007, PloS one.

[12]  David W. Smith,et al.  Shifting linear growth during infancy: illustration of genetic factors in growth from fetal life through infancy. , 1976, The Journal of pediatrics.

[13]  E. Susser,et al.  Prenatal famine and adult health. , 2011, Annual review of public health.

[14]  P. Donnelly,et al.  The role of ATM in response to metformin treatment and activation of AMPK. , 2012, Nature genetics.

[15]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[16]  Philippe Froguel,et al.  Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight , 2010, Nature Genetics.

[17]  Tom M Palmer,et al.  Genetic Evidence for Causal Relationships Between Maternal Obesity-Related Traits and Birth Weight. , 2016, JAMA.

[18]  Xiaoting Chen,et al.  Genetic Associations with Gestational Length and Spontaneous Preterm Birth , 2017, The New England journal of medicine.

[19]  Reedik Mägi,et al.  GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.

[20]  Yu-Kang Tu,et al.  Why evidence for the fetal origins of adult disease might be a statistical artifact: the "reversal paradox" for the relation between birth weight and blood pressure in later life. , 2005, American journal of epidemiology.

[21]  N. Timpson,et al.  Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors , 2015, European Journal of Epidemiology.

[22]  Tom R. Gaunt,et al.  LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis , 2016, bioRxiv.

[23]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[24]  Kyle J. Gaulton,et al.  Genome-wide associations for birth weight and correlations with adult disease , 2016 .

[25]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[26]  Mark I. McCarthy,et al.  Early Life Factors and Blood Pressure at Age 31 Years in the 1966 Northern Finland Birth Cohort , 2004, Hypertension.

[27]  David M. Evans,et al.  Resolving the Effects of Maternal and Offspring Genotype on Dyadic Outcomes in Genome Wide Complex Trait Analysis (“M-GCTA”) , 2014, Behavior genetics.

[28]  Samuel E. Jones,et al.  Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank , 2016, British Medical Journal.

[29]  G. Davey Smith,et al.  Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator , 2016, Genetic epidemiology.

[30]  Josyf Mychaleckyj,et al.  Robust relationship inference in genome-wide association studies , 2010, Bioinform..

[31]  O. Delaneau,et al.  Supplementary Information for ‘ Improved whole chromosome phasing for disease and population genetic studies ’ , 2012 .

[32]  Sian Ellard,et al.  Mutations in the glucokinase gene of the fetus result in reduced birth weight , 1998, Nature Genetics.

[33]  A. Hattersley,et al.  The fetal insulin hypothesis: an alternative explanation of the association of low bir thweight with diabetes and vascular disease , 1999, The Lancet.

[34]  G. Kempermann Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .

[35]  Jacqueline K. White,et al.  Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis , 2017, Nature Genetics.

[36]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[37]  G. G. Nahum,et al.  Relationship of paternal factors to birth weight. , 2003, The Journal of reproductive medicine.

[38]  Samuel E. Jones,et al.  Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms , 2019, Nature Communications.

[39]  Bengt Persson,et al.  Hyperglycemia and Adverse Pregnancy Outcomes , 2009 .

[40]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[41]  A. Thapar,et al.  Methodology for Genetic Studies of Twins and Families , 1993 .

[42]  Ayellet V. Segrè,et al.  Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits , 2010, PLoS genetics.

[43]  T. Sørensen,et al.  Sex Differences in the Association Between Birth Weight and Adult Type 2 Diabetes , 2015, Diabetes.

[44]  P. Donnelly,et al.  Genome-wide genetic data on ~500,000 UK Biobank participants , 2017, bioRxiv.

[45]  B. Berger,et al.  Efficient Bayesian mixed model analysis increases association power in large cohorts , 2014, Nature Genetics.

[46]  R. Freathy,et al.  Genetic origins of low birth weight , 2012, Current opinion in clinical nutrition and metabolic care.

[47]  H. C. Miller Diabetes and pregnancy: Blood sugar of newborn infants , 1953 .

[48]  J. Hiller,et al.  Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. , 2005, The New England journal of medicine.

[49]  S. Ozanne,et al.  Mechanisms underlying the developmental origins of disease , 2012, Reviews in Endocrine and Metabolic Disorders.

[50]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[51]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[52]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[53]  T. Sørensen,et al.  Comparison of associations of maternal peri-pregnancy and paternal anthropometrics with child anthropometrics from birth through age 7 y assessed in the Danish National Birth Cohort. , 2016, The American journal of clinical nutrition.

[54]  Mark I. McCarthy,et al.  A Central Role for GRB10 in Regulation of Islet Function in Man , 2014, PLoS genetics.

[55]  Gregory P. Way,et al.  Implicating candidate genes at GWAS signals by leveraging topologically associating domains , 2017, European Journal of Human Genetics.

[56]  Samuel E. Jones,et al.  Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics , 2018, Human molecular genetics.

[57]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[58]  Y. Ben-Shlomo,et al.  Deprivation in infancy or in adult life: which is more important for mortality risk? , 1991, The Lancet.

[59]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[60]  Ross M. Fraser,et al.  Defining the role of common variation in the genomic and biological architecture of adult human height , 2014, Nature Genetics.

[61]  Dereje D. Jima,et al.  A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure , 2018, Cell reports.

[62]  E. Hyppönen,et al.  Parental growth at different life stages and offspring birthweight: an intergenerational cohort study. , 2004, Paediatric and perinatal epidemiology.

[63]  David M. Evans,et al.  Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing them , 2017, Wellcome open research.

[64]  Bjarni V. Halldórsson,et al.  The nature of nurture: Effects of parental genotypes , 2017, Science.

[65]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[66]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[67]  Daniel E. Miller,et al.  Genetic Associations With Gestational Duration and Spontaneous Preterm Birth , 2018, Obstetric Anesthesia Digest.

[68]  S. Ebrahim,et al.  'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.

[69]  Arthur Walton,et al.  The maternal effects on growth and conformation in Shire horse-Shetland pony crosses. , 1938 .

[70]  B. Pierce,et al.  Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators , 2013, American journal of epidemiology.

[71]  J. Priest,et al.  Birthweight, Type 2 Diabetes Mellitus, and Cardiovascular Disease , 2018, Circulation. Genomic and precision medicine.

[72]  D. Lawlor,et al.  Clustered Environments and Randomized Genes: A Fundamental Distinction between Conventional and Genetic Epidemiology , 2007, PLoS medicine.

[73]  T. Cole,et al.  Differential parental weight and height contributions to offspring birthweight and weight gain in infancy. , 2007, International journal of epidemiology.

[74]  R. Freathy Can genetic evidence help us to understand the fetal origins of type 2 diabetes? , 2016, Diabetologia.

[75]  Olli Simell,et al.  New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism , 2012, Nature Genetics.

[76]  J. Manson,et al.  Low birthweight and risk of type 2 diabetes: a Mendelian randomisation study , 2016, Diabetologia.

[77]  K. Hao,et al.  Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases , 2017, Human molecular genetics.

[78]  Height associated variants demonstrate assortative mating in human populations , 2017, Scientific Reports.