Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors
暂无分享,去创建一个
Kyle J. Gaulton | Peter K. Joshi | Sara M. Willems | Samuel E. Jones | David M. Evans | K. Lunetta | J. Murabito | A. Hofman | A. Uitterlinden | T. Spector | I. Ntalla | K. Hao | M. McCarthy | E. Zeggini | A. Morris | D. Lawlor | T. Lehtimäki | H. Hakonarson | X. Estivill | S. Grant | T. Hansen | O. Pedersen | N. Grarup | D. Torrents | Z. Kutalik | J. Tyrrell | Po-Ru Loh | S. Ring | T. Frayling | R. Freathy | J. Perry | B. Shields | M. Weedon | A. Hattersley | N. W. Rayner | N. Timpson | Y. Teo | J. Viikari | M. Kogevinas | C. Marsit | M. Vrijheid | L. Chatzi | A. Vaag | O. Raitakari | F. Rivadeneira | T. Ahluwalia | K. Bønnelykke | H. Bisgaard | N. Warrington | G. Willemsen | E. D. de Geus | D. Scholtens | G. Montgomery | K. Mohlke | J. Bradfield | R. Rueedi | T. Lakka | D. Boomsma | M. Stumvoll | H. Inskip | N. Wareham | J. Heinrich | M. Horikoshi | A. Mahajan | V. Lagou | L. Marullo | J. Hottenga | E. Hyppönen | M. Müller-Nurasyid | E. V. van Leeuwen | C. V. van Duijn | J. Eriksson | C. Power | M. Järvelin | I. Prokopenko | P. Marques‐Vidal | D. Hougaard | S. Medland | A. V. van Kampen | H. Kadarmideen | J. Mercader | B. Knight | P. Njølstad | K. Ong | A. Bennett | N. Robertson | D. Evans | B. Jacobsson | P. Joshi | P. Lind | R. Myhre | H. Campbell | G. Dedoussis | M. Kähönen | P. Vollenweider | E. Widén | James F. Wilson | S. Saw | Jin-Fang Chai | J. Luan | R. Scott | C. Langenberg | F. Rosendaal | D. Mook-Kanamori | C. Have | T. Sørensen | A. Wood | M. Atalay | L. Lyytikäinen | Ying Wu | L. Adair | G. Davey Smith | M. Bartels | F. Day | T. Vrijkotte | L. Muglia | A. Linneberg | K. Michaelsen | V. Jaddoe | C. Duijn | B. V. van Schaik | L. Beilin | P. Kovacs | A. Tönjes | M. Hayes | G. Hemani | B. Feenstra | C. Medina-Gomez | F. Geller | J. Murray | S. Sebert | M. Melbye | E. V. Appel | Ø. Helgeland | S. Johansson | R. Li-Gao | C. Pennell | K. Ruth | Carol A. Wang | H. Yaghootkar | E. Thiering | E. D. Geus | A. Cavadino | H. Mbarek | R. Beaumont | M. Tuke | A. Murray | C. Relton | M. Nodzenski | Shouneng Peng | J. Painter | M. Murcia | R. Joro | M. Standl | W. Lowe | J. Holloway | N. Vilor-Tejedor | J. Bacelis | Ge Zhang | F. Mentch | D. Cousminer | K. Panoutsopoulou | E. M. Leeuwen | J. Fernández-Tajes | J. Felix | A. Körner | W. Kiess | M. Bustamante | M. Hivert | N. V. van Zuydam | W. Ang | L. Paternoster | E. Nøhr | Marc Vaudel | Jia Chen | J. Holm | J. Stokholm | J. Stokholm | B. Chawes | R. Vinding | C. Reichetzeder | B. Hocher | C. Pisinger | K. Schraut | M. Zafarmand | R. Richmond | S. Metrustry | Sílvia Bonàs-Guarch | F. Sánchez | H. Niinikoski | N. Zuydam | C. E. V. van Beijsterveldt | N. Pitkänen | S. Barton | V. Huikari | J. Marsh | K. Pahkala | H. D. de Haan | M. Kooijman | C. Laurin | C. E. Fonvig | C. Trier | J. Borja | C. Allard | A. Espinosa | L. Bouchard | Shikta Das | Jani Heikkinen | L. Santa-Marina | Jing Hua Zhao | J. Eriksson | T. Schnurr | C. S. Morgen | A. Eloranta | M. Vaudel | J. Tyrrell | Z. Qiao | Gunn-Helen Øiseth Moen | G. Moen | O. Raitakari | G. D. Smith | Katharina E. Schraut | B. Jacobsson | K. Gaulton | C. Fonvig | S. Jones | Barbera D. C. Schaik | Po-ru Loh | P. Marques-Vidal | Catharina E. M. van Beijsterveldt | Thorkild I. A. Sørensen | D. Lawlor | Joachim Heinrich | Marjolein N. Kooijman | M. Murcia | Andrew P Morris | Zhen Qiao | M. Kähönen | J. Eriksson | A. Uitterlinden | R. Scott | David M. Evans | A. Kampen | A. Hofman | J. Perry | D. Boomsma | Ying Wu | R. Scott | Elina Hyppönen | M. McCarthy | H. G. D. Haan | Ana Espinosa | R. Scott | Ying Wu | T. Hansen | F. Sánchez | Olli T. Raitakari | M. McCarthy | Ronny Myhre | T. I. Sørensen | Catherine Allard | Charles Laurin | Friman Sánchez | A. Murray | Aino-Maija Eloranta | Ruifang Li-Gao | S. Bonàs-Guarch
[1] J. Priest,et al. Birthweight, Type 2 Diabetes and Cardiovascular Disease: Addressing the Barker Hypothesis with Mendelian randomization , 2017, bioRxiv.
[2] C. Osmond,et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth , 2004, Diabetologia.
[3] Evan Z. Macosko,et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types , 2017, Nature Genetics.
[4] T. Lehtimäki,et al. Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.
[5] B. Shields,et al. Evidence of genetic regulation of fetal longitudinal growth. , 2005, Early human development.
[6] R. Collins,et al. Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? , 2002, The Lancet.
[7] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.
[8] Stefan Johansson,et al. Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis , 2015, PLoS medicine.
[9] P. Andersen,et al. Birth weight and systolic blood pressure in adolescence and adulthood: meta-regression analysis of sex- and age-specific results from 20 Nordic studies. , 2007, American journal of epidemiology.
[10] David M. Evans,et al. Using structural equation modelling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank , 2018, International journal of epidemiology.
[11] Evangelos Evangelou,et al. Heterogeneity in Meta-Analyses of Genome-Wide Association Investigations , 2007, PloS one.
[12] David W. Smith,et al. Shifting linear growth during infancy: illustration of genetic factors in growth from fetal life through infancy. , 1976, The Journal of pediatrics.
[13] E. Susser,et al. Prenatal famine and adult health. , 2011, Annual review of public health.
[14] P. Donnelly,et al. The role of ATM in response to metformin treatment and activation of AMPK. , 2012, Nature genetics.
[15] P. Visscher,et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.
[16] Philippe Froguel,et al. Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight , 2010, Nature Genetics.
[17] Tom M Palmer,et al. Genetic Evidence for Causal Relationships Between Maternal Obesity-Related Traits and Birth Weight. , 2016, JAMA.
[18] Xiaoting Chen,et al. Genetic Associations with Gestational Length and Spontaneous Preterm Birth , 2017, The New England journal of medicine.
[19] Reedik Mägi,et al. GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.
[20] Yu-Kang Tu,et al. Why evidence for the fetal origins of adult disease might be a statistical artifact: the "reversal paradox" for the relation between birth weight and blood pressure in later life. , 2005, American journal of epidemiology.
[21] N. Timpson,et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors , 2015, European Journal of Epidemiology.
[22] Tom R. Gaunt,et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis , 2016, bioRxiv.
[23] Gabor T. Marth,et al. A global reference for human genetic variation , 2015, Nature.
[24] Kyle J. Gaulton,et al. Genome-wide associations for birth weight and correlations with adult disease , 2016 .
[25] P. Visscher,et al. GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.
[26] Mark I. McCarthy,et al. Early Life Factors and Blood Pressure at Age 31 Years in the 1966 Northern Finland Birth Cohort , 2004, Hypertension.
[27] David M. Evans,et al. Resolving the Effects of Maternal and Offspring Genotype on Dyadic Outcomes in Genome Wide Complex Trait Analysis (“M-GCTA”) , 2014, Behavior genetics.
[28] Samuel E. Jones,et al. Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank , 2016, British Medical Journal.
[29] G. Davey Smith,et al. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator , 2016, Genetic epidemiology.
[30] Josyf Mychaleckyj,et al. Robust relationship inference in genome-wide association studies , 2010, Bioinform..
[31] O. Delaneau,et al. Supplementary Information for ‘ Improved whole chromosome phasing for disease and population genetic studies ’ , 2012 .
[32] Sian Ellard,et al. Mutations in the glucokinase gene of the fetus result in reduced birth weight , 1998, Nature Genetics.
[33] A. Hattersley,et al. The fetal insulin hypothesis: an alternative explanation of the association of low bir thweight with diabetes and vascular disease , 1999, The Lancet.
[34] G. Kempermann. Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .
[35] Jacqueline K. White,et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis , 2017, Nature Genetics.
[36] G. Davey Smith,et al. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.
[37] G. G. Nahum,et al. Relationship of paternal factors to birth weight. , 2003, The Journal of reproductive medicine.
[38] Samuel E. Jones,et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms , 2019, Nature Communications.
[39] Bengt Persson,et al. Hyperglycemia and Adverse Pregnancy Outcomes , 2009 .
[40] Yun Li,et al. METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..
[41] A. Thapar,et al. Methodology for Genetic Studies of Twins and Families , 1993 .
[42] Ayellet V. Segrè,et al. Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits , 2010, PLoS genetics.
[43] T. Sørensen,et al. Sex Differences in the Association Between Birth Weight and Adult Type 2 Diabetes , 2015, Diabetes.
[44] P. Donnelly,et al. Genome-wide genetic data on ~500,000 UK Biobank participants , 2017, bioRxiv.
[45] B. Berger,et al. Efficient Bayesian mixed model analysis increases association power in large cohorts , 2014, Nature Genetics.
[46] R. Freathy,et al. Genetic origins of low birth weight , 2012, Current opinion in clinical nutrition and metabolic care.
[47] H. C. Miller. Diabetes and pregnancy: Blood sugar of newborn infants , 1953 .
[48] J. Hiller,et al. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. , 2005, The New England journal of medicine.
[49] S. Ozanne,et al. Mechanisms underlying the developmental origins of disease , 2012, Reviews in Endocrine and Metabolic Disorders.
[50] M. Daly,et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.
[51] P. Donnelly,et al. The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.
[52] C. Wallace,et al. Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.
[53] T. Sørensen,et al. Comparison of associations of maternal peri-pregnancy and paternal anthropometrics with child anthropometrics from birth through age 7 y assessed in the Danish National Birth Cohort. , 2016, The American journal of clinical nutrition.
[54] Mark I. McCarthy,et al. A Central Role for GRB10 in Regulation of Islet Function in Man , 2014, PLoS genetics.
[55] Gregory P. Way,et al. Implicating candidate genes at GWAS signals by leveraging topologically associating domains , 2017, European Journal of Human Genetics.
[56] Samuel E. Jones,et al. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics , 2018, Human molecular genetics.
[57] Jun S. Liu,et al. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.
[58] Y. Ben-Shlomo,et al. Deprivation in infancy or in adult life: which is more important for mortality risk? , 1991, The Lancet.
[59] M. Daly,et al. An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.
[60] Ross M. Fraser,et al. Defining the role of common variation in the genomic and biological architecture of adult human height , 2014, Nature Genetics.
[61] Dereje D. Jima,et al. A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure , 2018, Cell reports.
[62] E. Hyppönen,et al. Parental growth at different life stages and offspring birthweight: an intergenerational cohort study. , 2004, Paediatric and perinatal epidemiology.
[63] David M. Evans,et al. Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing them , 2017, Wellcome open research.
[64] Bjarni V. Halldórsson,et al. The nature of nurture: Effects of parental genotypes , 2017, Science.
[65] Jesse R. Dixon,et al. Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.
[66] Ross Ihaka,et al. Gentleman R: R: A language for data analysis and graphics , 1996 .
[67] Daniel E. Miller,et al. Genetic Associations With Gestational Duration and Spontaneous Preterm Birth , 2018, Obstetric Anesthesia Digest.
[68] S. Ebrahim,et al. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.
[69] Arthur Walton,et al. The maternal effects on growth and conformation in Shire horse-Shetland pony crosses. , 1938 .
[70] B. Pierce,et al. Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators , 2013, American journal of epidemiology.
[71] J. Priest,et al. Birthweight, Type 2 Diabetes Mellitus, and Cardiovascular Disease , 2018, Circulation. Genomic and precision medicine.
[72] D. Lawlor,et al. Clustered Environments and Randomized Genes: A Fundamental Distinction between Conventional and Genetic Epidemiology , 2007, PLoS medicine.
[73] T. Cole,et al. Differential parental weight and height contributions to offspring birthweight and weight gain in infancy. , 2007, International journal of epidemiology.
[74] R. Freathy. Can genetic evidence help us to understand the fetal origins of type 2 diabetes? , 2016, Diabetologia.
[75] Olli Simell,et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism , 2012, Nature Genetics.
[76] J. Manson,et al. Low birthweight and risk of type 2 diabetes: a Mendelian randomisation study , 2016, Diabetologia.
[77] K. Hao,et al. Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases , 2017, Human molecular genetics.
[78] Height associated variants demonstrate assortative mating in human populations , 2017, Scientific Reports.