Layerwise Monitoring of the Selective Laser Melting Process by Thermography

Abstract Selective Laser Melting is utilized to build parts directly from CAD data. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout. By integration of an off-axis mounted uncooled thermal detector, the solidification as well as the layer deposition are monitored and evaluated. This enables the identification of hot spots in an early stage during the solidification process and helps to avoid process interrupts. Potential quality indicators are derived from spatially resolved measurement data and are correlated to the resulting part properties. A model of heat dissipation is presented based on the measurement of the material response for varying heat input. Current results show the feasibility of process surveillance by thermography for a limited section of the building platform in a commercial system.