Bilattices for deductions in multi-valued logic

Abstract In this exploratory paper we propose a framework for the deduction apparatus of multi-valued logics based on the idea that a deduction apparatus has to be a tool to manage information on truth values and not directly truth values of the formulas. This is obtained by embedding the algebraic structure V defined by the set of truth values into a bilattice B . The intended interpretation is that the elements of B are pieces of information on the elements of V . The resulting formalisms are particularized in the framework of fuzzy logic programming. Since we see fuzzy control as a chapter of multi-valued logic programming, this suggests a new and powerful approach to fuzzy control based on positive and negative conditions.

[1]  Melvin Fitting,et al.  Bilattices and the Semantics of Logic Programming , 1991, J. Log. Program..

[2]  Giangiacomo Gerla,et al.  Inferences in Probability Logic , 1994, Artif. Intell..

[3]  Melvin Fitting,et al.  Fixpoint Semantics for Logic Programming a Survey , 2001, Theor. Comput. Sci..

[4]  Jan Pavelka,et al.  On Fuzzy Logic I Many-valued rules of inference , 1979, Math. Log. Q..

[5]  Isabelle Bloch,et al.  Mathematical morphology on bipolar fuzzy sets: general algebraic framework , 2012, Int. J. Approx. Reason..

[6]  Chris Cornelis,et al.  A Bilattice-Based Framework for Handling Graded Truth and Imprecision , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[7]  L. A. Zadeh,et al.  Fuzzy logic and approximate reasoning , 1975, Synthese.

[8]  Didier Dubois,et al.  On Ignorance and Contradiction Considered as Truth-Values , 2007, Log. J. IGPL.

[9]  Alexis Tsoukiàs,et al.  Paraconsistent semantics for Pavelka style fuzzy sentential logic , 2010, Fuzzy Sets Syst..

[10]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[11]  Didier Dubois,et al.  Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets , 2012, Fuzzy Sets Syst..

[12]  Matthew L. Ginsberg,et al.  Multivalued logics: a uniform approach to reasoning in artificial intelligence , 1988, Comput. Intell..

[13]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[14]  Giangiacomo Gerla Fuzzy Logic Programming and Fuzzy Control , 2005, Stud Logica.

[15]  Melvin Fitting,et al.  Kleene's Logic, Generalized , 1991, J. Log. Comput..

[16]  Giangiacomo Gerla Effectiveness and multivalued logics , 2006, J. Symb. Log..

[17]  Giangiacomo Gerla,et al.  Generated necessities and possibilities , 1992, Int. J. Intell. Syst..

[18]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[19]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[20]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[21]  V. Novák Fuzzy sets and their applications , 1989 .

[22]  Giangiacomo Gerla Probability-Like Functionals and Fuzzy Logic* , 1997 .

[23]  Giangiacomo Gerla,et al.  Fuzzy control as a fuzzy deduction system , 2001, Fuzzy Sets Syst..

[24]  Agata Pilitowska Interval Bilattices and Some Other Simple Bilattices , 2001, RelMiCS.

[25]  Peter Vojtás,et al.  Fuzzy logic programming , 2001, Fuzzy Sets Syst..

[26]  H. Prade,et al.  Possibilistic logic , 1994 .

[27]  Martine De Cock,et al.  A core language for fuzzy answer set programming , 2012, Int. J. Approx. Reason..