Augmentation block preconditioners for saddle point‐type matrices with singular (1, 1) blocks

We consider the use of block preconditioners for the application of the preconditioned Krylov subspace iterative methods to the solution of large saddle point-type systems with singular (1, 1) blocks. Two block triangular preconditioners are introduced and the block diagonal preconditioner in Greif and Schotzau (Electron. Trans. Numer. Anal. 2006; 22:114–121) is extended to nonsymmetric saddle point systems. All these preconditioners are based on augmentation, using nonsingular weight matrices. If the nullity of the (1, 1) block takes its highest possible value, the preconditioned matrix with either block triangular preconditioner has precisely three distinct eigenvalues, and the preconditioned matrix with the block diagonal preconditioner has precisely two distinct eigenvalues, giving rise to immediate convergence of preconditioned GMRES. Finally, numerical experiments that validate the analysis are reported. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Eric de Sturler,et al.  Block-Diagonal and Constraint Preconditioners for Nonsymmetric Indefinite Linear Systems. Part I: Theory , 2005, SIAM J. Sci. Comput..

[3]  D. Schötzau,et al.  Preconditioners for saddle point linear systems with highly singular blocks. , 2006 .

[4]  Gene H. Golub,et al.  On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..

[5]  Claudio Canuto,et al.  Generalized Inf-Sup Conditions for Chebyshev Spectral Approximation of the Stokes Problem , 1988 .

[6]  James Hardy Wilkinson,et al.  Kronecker''s canonical form and the QZ algorithm , 1979 .

[7]  Zhi-Hao Cao A class of constraint preconditioners for nonsymmetric saddle point matrices , 2006, Numerische Mathematik.

[8]  Gene H. Golub,et al.  An Algebraic Analysis of a Block Diagonal Preconditioner for Saddle Point Systems , 2005, SIAM J. Matrix Anal. Appl..

[9]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[10]  Howard C. Elman,et al.  Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..

[11]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[12]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[13]  W. Heinrichs Splitting techniques for the pseudospectral approximation of the unsteady Stokes equations , 1993 .

[14]  Zhi-Hao Cao,et al.  A note on block diagonal and constraint preconditioners for non-symmetric indefinite linear systems , 2006, Int. J. Comput. Math..