Augmentation block preconditioners for saddle point‐type matrices with singular (1, 1) blocks
暂无分享,去创建一个
[1] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[2] Eric de Sturler,et al. Block-Diagonal and Constraint Preconditioners for Nonsymmetric Indefinite Linear Systems. Part I: Theory , 2005, SIAM J. Sci. Comput..
[3] D. Schötzau,et al. Preconditioners for saddle point linear systems with highly singular blocks. , 2006 .
[4] Gene H. Golub,et al. On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..
[5] Claudio Canuto,et al. Generalized Inf-Sup Conditions for Chebyshev Spectral Approximation of the Stokes Problem , 1988 .
[6] James Hardy Wilkinson,et al. Kronecker''s canonical form and the QZ algorithm , 1979 .
[7] Zhi-Hao Cao. A class of constraint preconditioners for nonsymmetric saddle point matrices , 2006, Numerische Mathematik.
[8] Gene H. Golub,et al. An Algebraic Analysis of a Block Diagonal Preconditioner for Saddle Point Systems , 2005, SIAM J. Matrix Anal. Appl..
[9] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[10] Howard C. Elman,et al. Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..
[11] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[12] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[13] W. Heinrichs. Splitting techniques for the pseudospectral approximation of the unsteady Stokes equations , 1993 .
[14] Zhi-Hao Cao,et al. A note on block diagonal and constraint preconditioners for non-symmetric indefinite linear systems , 2006, Int. J. Comput. Math..