Sandpile models and lattices: a comprehensive survey

Starting from some studies of (linear) integer partitions, we noticed that the lattice structure is strongly related to a large variety of discrete dynamical models, in particular sandpile models and chip firing games. After giving an historical survey of the main results which appeared about this, we propose a unified framework to explain the strong relationship between these models and lattices. In particular, we show that the apparent complexity of these models can be reduced, by showing the possibility of simplifying them, and we show how the known lattice properties can be deduced from this.

[1]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[2]  Eric Goles Ch.,et al.  Sandpiles and order structure of integer partitions , 2002, Discret. Appl. Math..

[3]  Robert Cori,et al.  On the Sandpile Group of a Graph , 2000 .

[4]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[5]  J. Shaw Combinatory Analysis , 1917, Nature.

[6]  S. Crawford,et al.  Volume 1 , 2012, Journal of Diabetes Investigation.

[7]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[8]  Joseph P. S. Kung,et al.  The Dilworth Theorems: Selected Papers of Robert P. Dilworth , 1990 .

[9]  Thi Ha Duong Phan,et al.  Characterization of Lattices Induced by (extended) Chip Firing Games , 2001, DM-CCG.

[10]  Akademii︠a︡ medit︠s︡inskikh nauk Sssr Journal of physics , 1939 .

[11]  W. Ames Mathematics in Science and Engineering , 1999 .

[12]  Matthieu Latapy,et al.  The lattice structure of chip firing games and related models , 2000 .

[13]  Eric Rémila,et al.  The lattice structure of the set of domino tilings of a polygon , 2004, Theor. Comput. Sci..

[14]  Matthieu Latapy,et al.  Structure of some sand piles model , 2000, Theor. Comput. Sci..

[15]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[16]  Eric Goles Ch.,et al.  Games on Line Graphs and Sand Piles , 1993, Theor. Comput. Sci..

[17]  Eric Goles Ch.,et al.  The structure of a linear chip firing game and related models , 2002, Theor. Comput. Sci..

[18]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[19]  B. Monjardet The Consequences of Dilworth’s Work on Lattices with Unique Irreducible Decompositions , 1990 .

[20]  Kimmo Eriksson,et al.  No polynomial bound for the chip firing game on directed graphs , 1991 .

[21]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[22]  Karell Bertet Sur quelques aspects algorithmiques et structurels des treillis , 1998 .

[23]  D. Dhar,et al.  Algebraic aspects of Abelian sandpile models , 1995 .

[24]  J. Propp Lattice structure for orientations of graphs , 2002, math/0209005.

[25]  Norman Biggs,et al.  Chip-Firing and the Critical Group of a Graph , 1999 .

[26]  Matthieu Latapy Generalized Integer Partitions, Tilings of Zonotopes and Lattices , 2000 .

[27]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[28]  James Gary Propp Generating random elements of finite distributive lattices , 1997, Electron. J. Comb..

[29]  Thomas Brylawski,et al.  The lattice of integer partitions , 1973, Discret. Math..

[30]  R. Lathe Phd by thesis , 1988, Nature.

[31]  Eric Goles Ch.,et al.  Lattice Structure and Convergence of a Game of Cards , 2000, ArXiv.

[32]  Oliver Pretzel,et al.  On reorienting graphs by pushing down maximal vertices , 1986 .

[33]  S. N. Maheshwari,et al.  An O(|V|³) Algorithm for Finding Maximum Flows in Networks , 1978, Inf. Process. Lett..

[34]  N. Biggs Algebraic Potential Theory on Graphs , 1997 .

[35]  V. Priezzhev,et al.  Introduction to the sandpile model , 1998, cond-mat/9801182.

[36]  Matthieu Latapy,et al.  Partitions of an Integer into Powers , 2021, DM-CCG.

[37]  H. Grundel,et al.  The London School of Economics , 1938, Nature.

[38]  Ekkart Kindler,et al.  A Simplified Proof for a Self-Stabilizing Protocol: A Game of Cards , 1995, Inf. Process. Lett..

[39]  László Lovász,et al.  Chip-firing Games on Graphs , 1991, Eur. J. Comb..

[40]  László Lovász,et al.  Chip-Firing Games on Directed Graphs , 1992 .

[41]  Matthieu Latapy,et al.  Generalized Tiling with Height Functions , 2003 .

[42]  Jan van den Heuvel,et al.  Algorithmic Aspects of a Chip-Firing Game , 2001, Combinatorics, Probability and Computing.

[43]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[44]  Robert Cori,et al.  On the Sandpile Group of Dual Graphs , 2000, Eur. J. Comb..

[45]  Satya N. Majumdar,et al.  Abelian sandpile model on the bethe lattice , 1990 .