Investigation of InAs–based devices for topological applications

Hybrid superconductor/semiconductor devices constitute a powerful platform to investigate the emergence of new topological state of matter. Among all possible semiconductor materials, InAs represents a promising choice, owing to its high quality, large g-factor and spin–orbit component. Here, we report on InAs-based devices both in one–dimensional and two–dimensional configurations. In the former, low-temperature measurements on a suspended nanowire are presented, inspecting the intrinsic spin–orbit contribution of the system. In the latter, Josephson Junctions between two Nb contacts comprising an InAs quantum well are investigated. Supercurrent flow is reported, with Nb critical temperature up to Tc ∼ 8 K. Multiple Andreev reflection signals are observed in the dissipative regime. In both systems, we show that the presence of external gates represents a useful knob, allowing for wide tunability and control of device properties, such as spin–orbit coherence length or supercurrent amplitude.

[1]  F. Capotondi,et al.  Anticrossings of spin-split Landau levels in an InAs two-dimensional electron gas with spin-orbit coupling , 2005 .

[2]  Matteo Carrega,et al.  Quasiparticle entropy in superconductor/normal metal/superconductor proximity junctions in the diffusive limit , 2017 .

[3]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[4]  V. S. Shumeiko,et al.  Resonant subgap current transport in Josephson field effect transistor , 2016 .

[5]  Takayanagi,et al.  Observation of maximum supercurrent quantization in a superconducting quantum point contact. , 1995, Physical review letters.

[6]  D. Ferraro,et al.  Non-Abelian BF theory for 2 + 1 dimensional topological states of matter , 2011, 1106.4641.

[7]  Ying Wang,et al.  Formation of helical domain walls in the fractional quantum Hall regime as a step toward realization of high-order non-Abelian excitations , 2018, Physical Review B.

[8]  Charles M. Marcus,et al.  Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection , 2017, 1711.06864.

[9]  Koji Ishibashi,et al.  Electrical modulation of weak-antilocalization and spin–orbit interaction in dual gated Ge/Si core/shell nanowires , 2017 .

[10]  Giorgio Biasiol,et al.  Full electrostatic control of quantum interference in an extended trenched Josephson junction , 2019, Physical Review B.

[11]  T. M. Klapwijk,et al.  Subharmonic energy-gap structure in superconducting constrictions , 1983 .

[12]  P. Recher,et al.  Unpaired Majorana fermions in quantum wires , 2001 .

[13]  Jason Alicea,et al.  Exotic non-Abelian anyons from conventional fractional quantum Hall states , 2012, Nature Communications.

[14]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[15]  Lucia Sorba,et al.  Controlling the diameter distribution and density of InAs nanowires grown by Au-assisted methods , 2015 .

[16]  Thomas Kanne,et al.  Crystal orientation dependence of the spin-orbit coupling in InAs nanowires , 2018 .

[17]  A. V. Kretinin,et al.  Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene , 2015, 1504.03286.

[18]  Michael Stone,et al.  Josephson currents in quantum Hall devices , 2011, 1102.5265.

[19]  F. Giazotto,et al.  Coherent transport properties of a three-terminal hybrid superconducting interferometer , 2016, 1611.09285.

[20]  Hideaki Takayanagi,et al.  A Josephson field effect transistor using an InAs‐inserted‐channel In0.52Al0.48As/In0.53Ga0.47As inverted modulation‐doped structure , 1996 .

[21]  C. M. Marcus,et al.  Conduction channels of an InAs-Al nanowire Josephson weak link , 2017, 1706.09150.

[22]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[23]  T. Schapers,et al.  Spin precession and modulation in ballistic cylindrical nanowires due to the Rashba effect , 2010, 1011.4557.

[24]  C. Lieber,et al.  Spin states of holes in Ge/Si nanowire quantum dots. , 2008, Physical review letters.

[25]  Takashi Taniguchi,et al.  Inducing superconducting correlation in quantum Hall edge states , 2016, Nature Physics.

[26]  T. D. Clark,et al.  Feasibility of hybrid Josephson field effect transistors , 1980 .

[27]  Younghyun Kim,et al.  Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks , 2015, 1511.01127.

[28]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[29]  S. Chakravarty,et al.  Weak localization: The quasiclassical theory of electrons in a random potential , 1986 .

[30]  D. Mailly,et al.  The Spectral Conductance of a Proximity Superconductor and the Reentrance Effect , 1999 .

[31]  L. Sorba,et al.  Vectorial Control of the Spin-Orbit Interaction in Suspended InAs Nanowires. , 2018, Nano letters.

[32]  Claus B. Sørensen,et al.  Probing the spatial electron distribution in InAs nanowires by anisotropic magnetoconductance fluctuations , 2015 .

[33]  S. V. Khazanova,et al.  Features of electron gas in InAs nanowires imposed by interplay between nanowire geometry, doping and surface states , 2017, Scientific Reports.

[34]  R. Duine,et al.  New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.

[35]  C. J. Palmstrøm,et al.  Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure , 2016, Nature Communications.

[36]  Boris L. Altshuler,et al.  Magnetoresistance of thin films and of wires in a longitudinal magnetic field , 1981 .

[37]  Matteo Carrega,et al.  Energy transport in an integrable parafermionic chain via generalized hydrodynamics , 2018, Physical Review B.

[38]  Chang,et al.  Quantum interference effects and spin-orbit interaction in quasi-one-dimensional wires and rings. , 1992, Physical review. B, Condensed matter.

[39]  Giorgio Biasiol,et al.  in a two dimensional electron gas probed with a lateral quantum dot , 2011 .

[40]  Matthew P. A. Fisher,et al.  Universal topological quantum computation from a superconductor/Abelian quantum Hall heterostructure , 2013, 1307.4403.

[41]  H. Courtois,et al.  Andreev Reflection and Proximity effect , 1999 .

[42]  Matteo Carrega,et al.  Anyonic tight-binding models of parafermions and of fractionalized fermions , 2018, Physical Review B.

[43]  F. Capotondi,et al.  Scattering mechanisms in undoped In0.75Ga0.25As/In0.75Al0.25As two-dimensional electron gases , 2005 .

[44]  Frank K. Wilhelm,et al.  Quasiclassical Green’s function approach to mesoscopic superconductivity , 1998, cond-mat/9812297.

[45]  M. Madsen,et al.  Electrical tuning of Rashba spin-orbit interaction in multigated InAs nanowires , 2016, 1601.01854.

[46]  R Aguado,et al.  Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions , 2016, Nature Communications.

[47]  Hiroki Sugiyama,et al.  Josephson coupling through one-dimensional ballistic channel in semiconductor-superconductor hybrid quantum point contacts , 2014, 1404.5390.

[48]  Aleksandr Kazakov,et al.  Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures , 2015, Nature Communications.

[49]  E. Bakkers,et al.  Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires. , 2012, Physical review letters.

[50]  R. Gorbachev,et al.  Transition between electron localization and antilocalization in graphene. , 2009, Physical review letters.

[51]  David J. Clarke,et al.  Exotic circuit elements from zero-modes in hybrid superconductor–quantum-Hall systems , 2013, Nature Physics.

[52]  D. Loss,et al.  Electric-dipole-induced spin resonance in quantum dots , 2006, cond-mat/0601674.

[53]  Giorgio Biasiol,et al.  Toward Quantum Hall Effect in a Josephson Junction , 2018, physica status solidi (RRL) - Rapid Research Letters.

[54]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[55]  D. Ferraro,et al.  Multiple quasiparticle Hall spectroscopy investigated with a resonant detector , 2014, 1402.6488.

[56]  Jason Alicea,et al.  Topological Phases with Parafermions: Theory and Blueprints , 2015, 1504.02476.

[57]  T. M. Klapwijk,et al.  Nonlocal supercurrent in mesoscopic Josephson junctions , 1998 .

[58]  Gil Refael,et al.  Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states , 2012, 1204.5733.

[59]  C. W. J. Beenakker,et al.  Spin-triplet supercurrent carried by quantum Hall edge states through a Josephson junction , 2011, 1103.0887.

[60]  M. J. Manfra,et al.  Superconducting gatemon qubit based on a proximitized two-dimensional electron gas , 2017, Nature Nanotechnology.

[61]  I. V. Borzenets,et al.  Supercurrent in the quantum Hall regime , 2015, Science.

[62]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[63]  A. Gossard,et al.  Gate-controlled spin-orbit quantum interference effects in lateral transport. , 2002, Physical review letters.

[64]  G. Bergmann,et al.  Weak localization in thin films: a time-of-flight experiment with conduction electrons , 1984 .

[65]  F. Giazotto,et al.  A ballistic two-dimensional-electron-gas Andreev interferometer , 2014 .

[66]  J. Shabani,et al.  Transport properties of near surface InAs two-dimensional heterostructures , 2018, Applied Physics Letters.

[67]  A. Cavallini,et al.  Two-dimensional electron gas formation in undoped In0.75Ga0.25As/In0.75Al0.25As quantum wells , 2004 .

[68]  C. M. Marcus,et al.  Transparent Semiconductor-Superconductor Interface and Induced Gap in an Epitaxial Heterostructure Josephson Junction , 2016, Physical Review Applied.

[69]  Nadya Mason Superconductivity on the edge , 2016, Science.