Operation of terahertz quantum cascade lasers above 160 K covering a frequency range of 2-4 THz

The development of terahertz quantum cascade lasers (QCLs) has progressed significantly in the past ten years. Widely different types of QCLs have been demonstrated covering a frequency range from 1:2 THz to 5 THz (when operating without the existence of an external magnetic field). Improvement of operating temperatures of terahertz QCLs is one of the primary goals to make such devices viable for important terahertz applications. Some of the best techniques to obtain high operating temperatures have relied on electron-phonon scattering assisted depopulation. This paper reviews terahertz QCLs operating in a frequency range of 1:4 THz to 4:7 THz with such design schemes. Operation above a temperature of 160 K has been obtained across a broad range of frequencies from 1:8 THz - 4:3 THz. While the temperature degradation mechanisms are still not completely understood, it is speculated that collisional broadening of subbands may result in degradation of resonant tunneling transport at higher temperatures, which is critical to establishing population inversion in the QCL structure. The recently developed scattering-assisted injection techniques may mitigate subband broadening effects at higher temperatures, which is supported by experimental results. Further advances in the active region design as well as choice of different materials for growth and design of superlattices may result in even higher operating temperatures for terahertz QCLs.

[1]  A. Lee,et al.  Real-time terahertz imaging over a standoff distance (>25meters) , 2006 .

[2]  Jérôme Faist,et al.  Quantum cascade lasers operating from 1.2to1.6THz , 2007 .

[3]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[4]  Xicheng Zhang,et al.  Free-Space Electro-Optic Techniques , 2003 .

[5]  T. M. Klapwijk,et al.  High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz , 2011 .

[6]  R. Alan Cheville,et al.  Applications of Optically Generated Terahertz Pulses to Time Domain Ranging and Scattering , 2003 .

[7]  Z. R. Wasilewski,et al.  Terahertz quantum-cascade lasers based on a three-well active module , 2007 .

[8]  David A. Ritchie,et al.  Terahertz quantum-cascade lasers based on an interlaced photon-phonon cascade , 2004 .

[9]  Qing Hu,et al.  Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers , 2004 .

[10]  Kodo Kawase,et al.  COHERENT TUNABLE THZ-WAVE GENERATION FROM LINBO3 WITH MONOLITHIC GRATING COUPLER , 1996 .

[11]  Qing Hu,et al.  3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation , 2003 .

[12]  G. Scalari,et al.  Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction , 2005, CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005..

[13]  Federico Capasso,et al.  High-performance midinfrared quantum cascade lasers , 2010 .

[14]  P. Lugli,et al.  Limiting Factors for High Temperature Operation of THz Quantum Cascade Lasers , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[15]  Qing Hu,et al.  High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides. , 2007, Optics letters.

[16]  P. Vogl,et al.  Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP , 2010 .

[17]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[18]  Giles Davies,et al.  Far-infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K , 2003 .

[19]  David A. Ritchie,et al.  THz and sub‐THz quantum cascade lasers , 2009 .

[20]  Z. R. Wasilewski,et al.  A phonon scattering assisted injection and extraction based terahertz quantum cascade laser , 2012, 1201.4189.

[21]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[22]  Wei Shi,et al.  Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal. , 2002, Optics letters.

[23]  Qing Hu,et al.  Importance of coherence for electron transport in terahertz quantum cascade lasers , 2005 .

[24]  Q. Hu,et al.  Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers , 2009, 0910.2959.

[25]  Zhang Xi,et al.  Materials for terahertz science and technology , 2003 .

[26]  J. Reno,et al.  A 1.8-THz quantum cascade laser operating significantly above the temperature of ℏω/kB , 2011 .

[27]  Jérôme Faist,et al.  Low frequency terahertz quantum cascade laser operating from 1.6to1.8THz , 2006 .

[28]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[29]  Qing Hu,et al.  Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. , 2005, Optics express.

[30]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[31]  Sushil Kumar,et al.  Recent Progress in Terahertz Quantum Cascade Lasers , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  Andreas Wacker,et al.  Simulation of gain in quantum cascade lasers , 2009, OPTO.

[33]  J. Reno,et al.  Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation , 2009 .

[34]  S. Kumar,et al.  Long wavelength terahertz quantum-cascade lasers with one-well injector , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[35]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[36]  Carlo Sirtori,et al.  Resonant tunneling in quantum cascade lasers , 1998 .

[37]  Marcella Giovannini,et al.  InGaAs–AlInAs∕InP terahertz quantum cascade laser , 2005 .

[38]  D. Burghoff,et al.  Gain measurements of scattering-assisted terahertz quantum cascade lasers , 2012 .