End extending models of set theory via power admissible covers

Motivated by problems involving end extensions of models of set theory, we develop the rudiments of the power admissible cover construction (over ill-founded models of set theory), an extension of the machinery of admissible covers invented by Barwise as a versatile tool for generalising model-theoretic results about countable well-founded models of set theory to countable ill-founded ones. Our development of the power admissible machinery allows us to obtain new results concerning powersetpreserving end extensions and rank extensions of countable models of subsystems of ZFC. The canonical extension KP of Kripke-Platek set theory KP plays a key role in our work; one of our results refines a theorem of Rathjen by showing that Σ 1 -Foundation is provable in KP (without invoking the axiom of choice).

[1]  Michael Rathjen,et al.  Power Kripke-Platek set theory and the axiom of choice , 2018, J. Log. Comput..

[2]  Ali Enayat,et al.  Largest initial segments pointwise fixed by automorphisms of models of set theory , 2018, Arch. Math. Log..

[3]  Kameryn J. Williams The Structure of Models of Second-order Set Theories , 2018, 1804.09526.

[4]  B. Dahn Admissible sets and structures , 1978 .

[5]  J. Paris,et al.  ∑n-Collection Schemas in Arithmetic , 1978 .

[6]  Jon Barwise,et al.  Infinitary Methods in the Model Theory of Set Theory , 1971 .

[7]  Matt Kaufmann,et al.  On existence of Σn end extensions , 1981 .

[8]  Kameryn J Williams Minimum Models of second-order Set Theories , 2019, J. Symb. Log..

[9]  Henry Cohn,et al.  NOTES ON SET THEORY , 2007 .

[10]  Harvey M. Friedman,et al.  Countable models of set theories , 1973 .

[11]  Michael Rathjen A Proof-Theoretic Characterization of the Primitive Recursive Set Functions , 1992, J. Symb. Log..

[12]  Paul K. Gorbow,et al.  Rank-initial embeddings of non-standard models of set theory , 2019, Archive for Mathematical Logic.

[13]  John E. Hutchinson Elementary Extensions of Countable Models of Set Theory , 1976, J. Symb. Log..

[14]  Michael Rathjen,et al.  Relativized ordinal analysis: The case of Power Kripke-Platek set theory , 2014, Ann. Pure Appl. Log..

[15]  A. R. D. Mathias,et al.  The strength of Mac Lane set theory , 2001, Ann. Pure Appl. Log..

[16]  Zachiri McKenzie,et al.  On the relative strengths of fragments of collection , 2018, Math. Log. Q..

[17]  Wilfrid Hodges Conference in Mathematical Logic — London ’70 , 1972 .

[18]  Peter Clote,et al.  Review: , Modeles non Standard en Arithmetique et theorie des Ensembles; A. J. Wilkie, Modeles non Standard de L'Arithmetique, et Complexite Algorithmique; J.-P. Ressayre, Modeles non Standard et Sous-Systemes Remarquables de ZF , 1989 .