Estimation-based metaheuristics for stochastic combinatorial optimization: case studies in stochastic routing problems

In stochastic combinatorial optimization, problem parameters are affected by uncertainty; however, probability distributions describing the uncertainty are known or can be estimated. Stochastic routing problems, a prominent class of stochastic combinatorial optimization problems, involve finding an efficient way to distribute or collect goods across a logistic network. In order to tackle these problems, I considered a typical setting in which the cost of each solution is a random variable, and the goal is to find the solution with the minimum expected cost. It has been shown that, for some problems and for known probability distributions, the expectation can be computed analytically. Unfortunately, this typically involves complex analytical developments and computationally expensive procedures. Moreover, computing the expectation through the analytical computation approach is a highly problem-specific issue and it requires a deep understanding of the underlying probabilistic model. An alternative approach is empirical estimation, which estimates the expectation through Monte Carlo simulation. The main advantage of the empirical estimation approach over the analytical computation one is generality: a sample estimate of the expected cost of a given solution can be obtained by simply averaging sample cost estimates over a number of realizations of the random variable.

[1]  Yu-Chi Ho,et al.  Ordinal optimization of DEDS , 1992, Discret. Event Dyn. Syst..

[2]  S. Andradóttir A method for discrete stochastic optimization , 1995 .

[3]  Paolo Toth,et al.  The Vehicle Routing Problem , 2002, SIAM monographs on discrete mathematics and applications.

[4]  Panos M. Pardalos,et al.  Expanding neighborhood search–GRASP for the probabilistic traveling salesman problem , 2008, Optim. Lett..

[5]  Harilaos N. Psaraftis,et al.  Dynamic vehicle routing: Status and prospects , 1995, Ann. Oper. Res..

[6]  S. Andradóttir,et al.  A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization , 1999 .

[7]  Maarten H. van der Vlerk,et al.  Stochastic Integer Programming Bibliography , 2007 .

[8]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[9]  Thomas Stützle,et al.  Applications of Racing Algorithms: An Industrial Perspective , 2005, Artificial Evolution.

[10]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[11]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[12]  David S. Johnson,et al.  The Traveling Salesman Problem: A Case Study in Local Optimization , 2008 .

[13]  I. Sabuncuoglu,et al.  Stochastic assembly line balancing using beam search , 2005 .

[14]  Prasanna Balaprakash,et al.  Adaptive sample size and importance sampling in estimation-based local search for the probabilistic traveling salesman problem , 2009, Eur. J. Oper. Res..

[15]  Sanjoy Mitter,et al.  Analysis of simulated annealing for optimization , 1985, 1985 24th IEEE Conference on Decision and Control.

[16]  David L. Woodruff,et al.  Progressive hedging as a meta-heuristic applied to stochastic lot-sizing , 2001, Eur. J. Oper. Res..

[17]  Gilbert Laporte,et al.  The vehicle routing problem: An overview of exact and approximate algorithms , 1992 .

[18]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[19]  Prasanna Balaprakash,et al.  The ACO/F-Race Algorithm for Combinatorial Optimization Under Uncertainty , 2007, Metaheuristics.

[20]  H. L. Ong,et al.  An Integer L-shaped Algorithm for Time-Constrained Traveling Salesman Problem with Stochastic Travel and Service times , 2004, Asia Pac. J. Oper. Res..

[21]  Edward P. C. Kao,et al.  A Preference Order Dynamic Program for a Stochastic Traveling Salesman Problem , 1978, Oper. Res..

[22]  Joseph F. Pekny,et al.  A Staged Primal-Dual Algorithm for Finding a Minimum Cost Perfect Two-Matching in an Undirected Graph , 1994, INFORMS J. Comput..

[23]  S. Rosenow Comparison of an Exact Branch-and-Bound and an Approximative Evolutionary Algorithm for the Probabilistic Traveling Salesman Problem , 1999 .

[24]  W. C. Benton,et al.  The vehicle scheduling problem with intermittent customer demands , 1992, Comput. Oper. Res..

[25]  Gilbert Laporte,et al.  Designing delivery districts for the vehicle routing problem with stochastic demands , 2007, Eur. J. Oper. Res..

[26]  Jean-Paul Watson,et al.  The impact of approximate evaluation on the performance of search algorithms for warehouse scheduling , 1999 .

[27]  Francisco Herrera,et al.  Analysis of the Best-Worst Ant System and Its Variants on the QAP , 2002, Ant Algorithms.

[28]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[29]  Dušan Teodorović,et al.  A simulated annealing technique approach to the vehicle routing problem in the case of stochastic demand , 1992 .

[30]  Charles Audet,et al.  Finding Optimal Algorithmic Parameters Using the Mesh Adaptive Direct Search Algorithm , 2004 .

[31]  Joshua D. Knowles,et al.  Local search for the probabilistic traveling salesman problem: Correction to the 2-p-opt and 1-shift algorithms , 2005, Eur. J. Oper. Res..

[32]  Patrizia Beraldi,et al.  Beam search heuristic to solve stochastic integer problems under probabilistic constraints , 2005, Eur. J. Oper. Res..

[33]  John J. Grefenstette,et al.  Genetic Algorithms for the Traveling Salesman Problem , 1985, ICGA.

[34]  Wang Hui,et al.  Solving the Vehicle Routing Problem with Stochastic Demands and Customers , 2005, Sixth International Conference on Parallel and Distributed Computing Applications and Technologies (PDCAT'05).

[35]  Silke Rosenow A heuristic for the probabilistic traveling salesman problem , 1997 .

[36]  J. Sanders,et al.  Integrating a modified simulated annealing algorithm with the simulation of a manufacturing system to optimize buffer sizes in automatic assembly systems , 1988, 1988 Winter Simulation Conference Proceedings.

[37]  Nicola Secomandi,et al.  Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands , 2000, Comput. Oper. Res..

[38]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[39]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[40]  Tito Homem-de-Mello,et al.  Solving the Vehicle Routing Problem with Stochastic Demands using the Cross-Entropy Method , 2005, Ann. Oper. Res..

[41]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[42]  T. Fink,et al.  Characterization of the probabilistic traveling salesman problem. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  F. Tillman The Multiple Terminal Delivery Problem with Probabilistic Demands , 1969 .

[44]  M. Dorigo,et al.  Ant colony optimization and local search for the probabilistic traveling salesman problem: a case study in stochastic combinatorial optimization , 2006 .

[45]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[46]  Xing Liu,et al.  A Tabu Search Algorithm for the Vehicle Routing Problem with Stochastic Demands , 2008 .

[47]  Tito Homem-de-Mello,et al.  Variable-sample methods for stochastic optimization , 2003, TOMC.

[48]  Luca Maria Gambardella,et al.  An Ant Colony Optimization Approach to the Probabilistic Traveling Salesman Problem , 2002, PPSN.

[49]  Arthur Griffith GCC, the complete reference , 2002 .

[50]  M. Dorigo,et al.  ACO/F-Race: Ant Colony Optimization and Racing Techniques for Combinatorial Optimization Under Uncertainty , 2005 .

[51]  Walter J. Gutjahr,et al.  A VNS Algorithm for Noisy Problems and Its Application to Project Portfolio Analysis , 2007, SAGA.

[52]  Patrick Jaillet,et al.  A Priori Solution of a Traveling Salesman Problem in Which a Random Subset of the Customers Are Visited , 1988, Oper. Res..

[53]  Michel Gendreau,et al.  A guide to vehicle routing heuristics , 2002, J. Oper. Res. Soc..

[54]  Arne Løkketangen,et al.  Using scenario trees and progressive hedging for stochastic inventory routing problems , 2009, J. Heuristics.

[55]  Talal M. Alkhamis,et al.  Simulated annealing for discrete optimization with estimation , 1999, Eur. J. Oper. Res..

[56]  Edward A. Silver,et al.  Tabu Search When Noise is Present: An Illustration in the Context of Cause and Effect Analysis , 1998, J. Heuristics.

[57]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[58]  Gilbert Laporte,et al.  Classical and modern heuristics for the vehicle routing problem , 2000 .

[59]  Ann Melissa Campbell,et al.  Extension of the 2-p-opt and 1-shift algorithms to the heterogeneous probabilistic traveling salesman problem , 2007, Eur. J. Oper. Res..

[61]  Barry L. Nelson,et al.  A combined procedure for optimization via simulation , 2002, Proceedings of the Winter Simulation Conference.

[62]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[63]  Gilbert Laporte,et al.  An Integer L-Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands , 2002, Oper. Res..

[64]  Bernd Freisleben,et al.  Memetic Algorithms for the Traveling Salesman Problem , 2002, Complex Syst..

[65]  Daniel A. Finke,et al.  Shop scheduling using Tabu search and simulation , 2002, Proceedings of the Winter Simulation Conference.

[66]  Mauro Birattari,et al.  Hybrid Metaheuristics for the Vehicle Routing Problem with Stochastic Demands , 2005, J. Math. Model. Algorithms.

[67]  Lingfeng Wang,et al.  Stochastic economic emission load dispatch through a modified particle swarm optimization algorithm , 2008 .

[68]  B. Bullnheimer,et al.  A NEW RANK BASED VERSION OF THE ANT SYSTEM: A COMPUTATIONAL STUDY , 1997 .

[69]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[70]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[71]  Andrzej Ruszczynski,et al.  On Optimal Allocation of Indivisibles Under Uncertainty , 1998, Oper. Res..

[72]  Barrett W. Thomas,et al.  Runtime reduction techniques for the probabilistic traveling salesman problem with deadlines , 2009, Comput. Oper. Res..

[73]  Andrew W. Moore,et al.  Using Prediction to Improve Combinatorial Optimization Search , 2007 .

[74]  Karl F. Doerner,et al.  Enriched workflow modelling and Stochastic Branch-and-Bound , 2006, Eur. J. Oper. Res..

[75]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[76]  Dimitris Bertsimas,et al.  A Vehicle Routing Problem with Stochastic Demand , 1992, Oper. Res..

[77]  Michael N. Vrahatis,et al.  Tuning PSO Parameters Through Sensitivity Analysis , 2002 .

[78]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[79]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[80]  D. Yan,et al.  Stochastic discrete optimization , 1992 .

[81]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[82]  Antoine Jézéquel,et al.  Probabilistic vehicle routing problems , 1985 .

[83]  Gilbert Laporte,et al.  STOCHASTIC VEHICLE ROUTING. , 1996 .

[84]  Patrick Jaillet,et al.  Probabilistic Traveling Salesman Problems , 1985 .

[85]  Jürgen Branke,et al.  New Ideas for Applying Ant Colony Optimization to the Probabilistic TSP , 2003, EvoWorkshops.

[86]  Mauro Birattari,et al.  Model-Based Search for Combinatorial Optimization: A Critical Survey , 2004, Ann. Oper. Res..

[87]  Alexander Shapiro,et al.  The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..

[88]  Edward W. Felten,et al.  Large-Step Markov Chains for the Traveling Salesman Problem , 1991, Complex Syst..

[89]  B. Fox,et al.  Probabilistic Search with Overrides , 1995 .

[90]  E. Silver,et al.  Some insights regarding selecting sets of scenarios in combinatorial stochastic problems , 1996 .

[91]  Jorge Haddock,et al.  Simulation optimization using simulated annealing , 1992 .

[92]  R. Seguin PROBLEMES STOCHASTIQUES DE TOURNEES DE VEHICULES , 1994 .

[93]  Cigdem Alabas-Uslu,et al.  Simulation optimization using tabu search , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[94]  Magdalene Marinaki,et al.  A Hybrid Multi-Swarm Particle Swarm Optimization algorithm for the Probabilistic Traveling Salesman Problem , 2010, Comput. Oper. Res..

[95]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[96]  Thomas Stützle,et al.  Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.

[97]  Francesco Rossi,et al.  Aspects of Heuristic Methods in the Probabilistic Traveling Salesman Problem (PTSP) , 1987 .

[98]  Barrett W. Thomas,et al.  Probabilistic Traveling Salesman Problem with Deadlines , 2008, Transp. Sci..

[99]  Thomas Stützle,et al.  Estimation-based metaheuristics for the probabilistic traveling salesman problem , 2010, Comput. Oper. Res..

[100]  Sigrún Andradóttir,et al.  A Global Search Method for Discrete Stochastic Optimization , 1996, SIAM J. Optim..

[101]  Gilbert Laporte,et al.  Models and exact solutions for a class of stochastic location-routing problems , 1987 .

[102]  E. R. Petersen STOCHASTIC VEHICLE ROUTING PROBLEM WITH RESTOCKING. , 2000 .

[103]  Mauro Birattari,et al.  Tuning Metaheuristics - A Machine Learning Perspective , 2009, Studies in Computational Intelligence.

[104]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[105]  Georg Ch. Pflug,et al.  Optimal stochastic single-machine-tardiness scheduling by stochastic branch-and-bound , 1999, Eur. J. Oper. Res..

[106]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[107]  David P. Morton,et al.  Stochastic Vehicle Routing with Random Travel Times , 2003, Transp. Sci..

[108]  Jürgen Branke,et al.  Solving the Probabilistic TSP with Ant Colony Optimization , 2004 .

[109]  Gilbert Laporte,et al.  An Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands and Customers , 1995, Transp. Sci..

[110]  Gilbert Laporte,et al.  Designing collection routes through bank branches , 1991, Comput. Oper. Res..

[111]  Chandrasekharan Rajendran,et al.  A simulation-based genetic algorithm for inventory optimization in a serial supply chain , 2005, Int. Trans. Oper. Res..

[112]  Andrew W. Moore,et al.  Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation , 1993, NIPS.

[113]  Moshe Sniedovich,et al.  Technical Note - Analysis of a Preference Order Traveling Salesman Problem , 1981, Oper. Res..

[114]  Mauro Birattari,et al.  An effective hybrid algorithm for university course timetabling , 2006, J. Sched..

[115]  Roberto Aringhieri,et al.  Solving Chance-Constrained Programs Combining Tabu Search and Simulation , 2004, WEA.

[116]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[117]  Jürgen Branke,et al.  Selecting a Selection Procedure , 2007, Manag. Sci..

[118]  Michael C. Fu,et al.  Optimization via simulation: A review , 1994, Ann. Oper. Res..

[119]  Ann Melissa Campbell Aggregation for the probabilistic traveling salesman problem , 2006, Comput. Oper. Res..

[120]  Mauro Birattari,et al.  The problem of tuning metaheuristics: as seen from the machine learning perspective , 2004 .

[121]  D. Bertsimas Probabilistic combinatorial optimization problems , 1988 .

[122]  W. Gutjahr S-ACO: An Ant-Based Approach to Combinatorial Optimization Under Uncertainty , 2004, ANTS Workshop.

[123]  Dimitris Bertsimas,et al.  Computational Approaches to Stochastic Vehicle Routing Problems , 1995, Transp. Sci..

[124]  David Simchi-Levi,et al.  Finding the Optimal a Priori Tour and Location of a Traveling Salesman with Nonhomogeneous Customers , 1988, Transp. Sci..

[125]  Georg Ch. Pflug,et al.  Simulated Annealing for noisy cost functions , 1996, J. Glob. Optim..

[126]  Thomas Stützle,et al.  Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem , 2009, Swarm Intelligence.

[127]  David L. Woodruff,et al.  Progressive hedging and tabu search applied to mixed integer (0,1) multistage stochastic programming , 1996, J. Heuristics.

[128]  John Holt,et al.  New optimality cuts for a single‐vehicle stochastic routing problem , 1999, Ann. Oper. Res..

[129]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[130]  Tito Homem-de-Mello Variable-sample methods and simulated annealing for discrete stochastic optimization , 2000 .

[131]  John N. Tsitsiklis,et al.  Rollout Algorithms for Combinatorial Optimization , 1997, J. Heuristics.

[132]  Eleni Hadjiconstantinou,et al.  Routing under Uncertainty: An Application in the Scheduling of Field Service Engineers , 2002, The Vehicle Routing Problem.

[133]  Moshe Dror,et al.  Stochastic vehicle routing with modified savings algorithm , 1986 .

[134]  J. Tukey Comparing individual means in the analysis of variance. , 1949, Biometrics.

[135]  Bruce L. Golden,et al.  Stochastic vehicle routing: A comprehensive approach , 1983 .

[136]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[137]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[138]  Michael C. Fu,et al.  Optimization for Simulation: Theory vs. Practice , 2002 .

[139]  Elise Miller-Hooks,et al.  Approximate Procedures for Probabilistic Traveling Salesperson Problem , 2004 .

[140]  Yongpei Guan,et al.  A Solution Method for a Two-dispatch Delivery Problem with Stochastic Customers , 2007, J. Math. Model. Algorithms.

[141]  Barrett W. Thomas,et al.  Challenges and Advances in A Priori Routing , 2008 .

[142]  C. Waters Vehicle-scheduling Problems with Uncertainty and Omitted Customers , 1989 .

[143]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[144]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[145]  Philippe Chervi A computational approach to probabilistic vehicle routing problems , 1990 .

[146]  D. Bertsimas,et al.  Further results on the probabilistic traveling salesman problem , 1993 .

[147]  Nashat Mansour,et al.  A distributed genetic algorithm for deterministic and stochastic labor scheduling problems , 1999, Eur. J. Oper. Res..

[148]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[149]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[150]  Georg Ch. Pflug,et al.  A branch and bound method for stochastic global optimization , 1998, Math. Program..

[151]  Ron Kohavi,et al.  Automatic Parameter Selection by Minimizing Estimated Error , 1995, ICML.

[152]  Gilbert Laporte,et al.  A Priori Optimization of the Probabilistic Traveling Salesman Problem , 1994, Oper. Res..

[153]  Luca Maria Gambardella,et al.  Solving the Homogeneous Probabilistic Traveling Salesman Problem by the ACO Metaheuristic , 2002, Ant Algorithms.

[154]  Alexander H. G. Rinnooy Kan,et al.  Bounds and Heuristics for Capacitated Routing Problems , 1985, Math. Oper. Res..

[155]  Y. Yoshitomi,et al.  A genetic algorithm and the Monte Carlo method for stochastic job‐shop scheduling , 2003 .

[156]  Walter J. Gutjahr,et al.  A Converging ACO Algorithm for Stochastic Combinatorial Optimization , 2003, SAGA.

[157]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[158]  Thomas Stützle,et al.  Local search algorithms for combinatorial problems - analysis, improvements, and new applications , 1999, DISKI.

[159]  Luca Maria Gambardella,et al.  A survey on metaheuristics for stochastic combinatorial optimization , 2009, Natural Computing.

[160]  Eric Châtelet,et al.  Monte Carlo simulation and genetic algorithm for optimising supply chain management in a stochastic environment , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[161]  Mauro Birattari,et al.  Towards a theory of practice in metaheuristics design: A machine learning perspective , 2006, RAIRO Theor. Informatics Appl..

[162]  Andrew W. Moore,et al.  Efficient Algorithms for Minimizing Cross Validation Error , 1994, ICML.

[163]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[164]  Lance Fortnow,et al.  The status of the P versus NP problem , 2009, CACM.

[165]  Thomas L. Morin,et al.  Generalized Dynamic Programming for Stochastic Combinatorial Optimization , 1989, Oper. Res..

[166]  Minghe Sun,et al.  Determining buffer location and size in production lines using tabu search , 1998, Eur. J. Oper. Res..

[167]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[168]  M. Birattari,et al.  The relevance of tuning the parameters of metaheuristics . A case study : The vehicle routing problem with stochastic demand , 2022 .

[169]  M. Dror Modeling vehicle routing with uncertain demands as a stochastic program: Properties of the corresponding solution , 1993 .

[170]  Y. Yoshitomi A Genetic Algorithm Approach to Solving Stochastic Job‐shop Scheduling Problems , 2002 .

[171]  Luca Maria Gambardella,et al.  Ant Colony Optimization and Local Search based on Exact and Estimated Objective Values for the Probabilistic Traveling Salesman Problem , 2007 .

[172]  Patrick Jaillet,et al.  A Priori Optimization , 1990, Oper. Res..

[173]  Yu-Hsin Liu Diversified local search strategy under scatter search framework for the probabilistic traveling salesman problem , 2008, Eur. J. Oper. Res..

[174]  Yu-Hsin Liu A hybrid scatter search for the probabilistic traveling salesman problem , 2007, Comput. Oper. Res..

[175]  Mahmoud H. Alrefaei,et al.  A modification of the stochastic ruler method for discrete stochastic optimization , 2001, Eur. J. Oper. Res..

[176]  Gilbert Laporte,et al.  The Vehicle Routing Problem with Stochastic Travel Times , 1992, Transp. Sci..

[177]  Moshe Dror,et al.  Vehicle Routing with Stochastic Demands: Properties and Solution Frameworks , 1989, Transp. Sci..

[178]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[179]  Leyuan Shi,et al.  Nested Partitions Method for Global Optimization , 2000, Oper. Res..

[180]  Talal M. Alkhamis,et al.  Simulation-based optimization using simulated annealing with confidence interval , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[181]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[182]  Alexander Shapiro,et al.  The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study , 2003, Comput. Optim. Appl..

[183]  Christine Strauss,et al.  A Stochastic Branch-and-Bound Approach to Activity Crashing in Project Management , 2000, INFORMS J. Comput..

[184]  Nicola Secomandi,et al.  A Rollout Policy for the Vehicle Routing Problem with Stochastic Demands , 2001, Oper. Res..

[185]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[186]  D.A. Castanon,et al.  Rollout Algorithms for Stochastic Scheduling Problems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).