Representation of Subspaces and Enumerative Encoding of the Grassmannian Space

Codes in the Grassmannian space have found recently application in network coding. Representation of k- dimensional subspaces of F n has generally an essential role in solving coding problems in the Grassmannian, and in particular in encoding subspaces of the Grassmannian. Different represen- tations of subspaces in the Grassmannian are presented. We use two of these representations for enumerative encoding of the Grassmannian. One enumerative encoding is based on a Ferrers diagram representation of subspaces; and another is based on an identifying vector and a reduced row echelon form representation of subspaces. A third method which combines the previous two is more efficient than the other two enumerative encodings. Each enumerative encoding is induced by some ordering of the Grassmannian. These orderings also induce lexicographic codes in the Grassmannian. Some of these codes suggest a new method to generate error-correcting codes in the Grassmannian with larger size than the current known codes.

[1]  William J. Martin,et al.  Anticodes for the Grassman and bilinear forms graphs , 1995, Des. Codes Cryptogr..

[2]  Thomas M. Cover,et al.  Enumerative source encoding , 1973, IEEE Trans. Inf. Theory.

[3]  N. J. A. Sloane,et al.  Lexicographic codes: Error-correcting codes from game theory , 1986, IEEE Trans. Inf. Theory.

[4]  Frank R. Kschischang,et al.  On Metrics for Error Correction in Network Coding , 2008, IEEE Transactions on Information Theory.

[5]  Moshe Schwartz,et al.  Codes and Anticodes in the Grassman Graph , 2002, J. Comb. Theory, Ser. A.

[6]  D. Knuth Subspaces, subsets, and partitions , 1971 .

[7]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[8]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[9]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[10]  Maximilien Gadouleau,et al.  Construction and covering properties of constant-dimension codes , 2009, 2009 IEEE International Symposium on Information Theory.

[11]  S. Finch Integer partitions , 2021 .

[12]  Stephen C. Milne Mappings of Subspaces into Subsets , 1982, J. Comb. Theory, Ser. A.

[13]  Simon Thomas,et al.  Designs and partial geometries over finite fields , 1996 .

[14]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[15]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[16]  Joachim Rosenthal,et al.  Spread codes and spread decoding in network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[17]  Michael Braun,et al.  Systematic Construction of q-Analogs of t−(v,k,λ)-Designs , 2005, Des. Codes Cryptogr..

[18]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[19]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[20]  Simon Thomas,et al.  Designs over finite fields , 1987 .

[21]  Maximilien Gadouleau,et al.  Constant-Rank Codes and Their Connection to Constant-Dimension Codes , 2008, IEEE Transactions on Information Theory.

[22]  Shu-Tao Xia,et al.  Johnson type bounds on constant dimension codes , 2007, Des. Codes Cryptogr..

[23]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[24]  Vitaly Skachek,et al.  Recursive Code Construction for Random Networks , 2008, IEEE Transactions on Information Theory.

[25]  Maximilien Gadouleau,et al.  On the Decoder Error Probability of Rank Metric Codes and Constant-Dimension Codes , 2008, ArXiv.

[26]  Rudolf Ahlswede,et al.  On Perfect Codes and Related Concepts , 2001, Des. Codes Cryptogr..

[27]  Alexander Vardy,et al.  Error-correcting codes in projective space , 2008, 2008 IEEE International Symposium on Information Theory.