The Current State of Solar Modeling

Data from the Global Oscillation Network Group (GONG) project and other helioseismic experiments provide a test for models of stellar interiors and for the thermodynamic and radiative properties, on which the models depend, of matter under the extreme conditions found in the sun. Current models are in agreement with the helioseismic inferences, which suggests, for example, that the disagreement between the predicted and observed fluxes of neutrinos from the sun is not caused by errors in the models. However, the GONG data reveal subtle errors in the models, such as an excess in sound speed just beneath the convection zone. These discrepancies indicate effects that have so far not been correctly accounted for; for example, it is plausible that the sound-speed differences reflect weak mixing in stellar interiors, of potential importance to the overall evolution of stars and ultimately to estimates of the age of the galaxy based on stellar evolution calculations.

[1]  S. M. Chitre,et al.  The Seismic Structure of the Sun , 1996, Science.

[2]  S. M. Chitre,et al.  Differential Rotation and Dynamics of the Solar Interior , 1996, Science.

[3]  D. Gough,et al.  Perspectives in Helioseismology , 1996, Science.

[4]  H. M. Antia,et al.  The Solar Acoustic Spectrum and Eigenmode Parameters , 1996, Science.

[5]  J. Toomre,et al.  Turbulent Dynamics in the Solar Convection Zone , 1995, Science.

[6]  J. Guzik,et al.  Early solar mass loss, element diffusion, and solar oscillation frequencies , 1995 .

[7]  J. Christensen-Dalsgaard,et al.  Pulsation models of the double-mode Cepheids in the Large Magellanic Cloud. , 1995 .

[8]  A. Kosovichev Helioseismic measurement of element abundances in the solar interior , 1995 .

[9]  H. Dzitko,et al.  The Screened Nuclear Reaction Rates and the Solar Neutrino Puzzle , 1995 .

[10]  M. Pinsonneault,et al.  Solar models with helium and heavy-element diffusion , 1995, hep-ph/9505425.

[11]  H. M. Antia Effects of surface layers on helioseismic inversion , 1995 .

[12]  D. Gough,et al.  Seismology of the solar envelope: measuring the acoustic phase shift generated in the outer layers , 1995 .

[13]  W. Haxton The Solar Neutrino Problem , 1995, hep-ph/9503430.

[14]  H. M. Antia,et al.  Helioseismic bounds in the central temperature of the Sun , 1995 .

[15]  P. Demarque,et al.  Rotation, diffusion, and overshoot in the Sun: effects on the oscillation frequencies and the neutrino flux , 1995, astro-ph/9501058.

[16]  R. Raghavan Solar Neutrinos—From Puzzle to Paradox , 1995, Science.

[17]  J. Bahcall Two solar neutrino problems , 1994 .

[18]  J. Christensen-Dalsgaard,et al.  Accurate frequencies of polytropic models , 1994 .

[19]  M. Pinsonneault,et al.  Stellar models with microscopic diffusion and rotational mixing 1.: Application to the Sun , 1994, astro-ph/9408058.

[20]  J. Christensen-Dalsgaard,et al.  The phase function for stellar acoustic oscillations – III. The solar case , 1994 .

[21]  I. Roxburgh,et al.  Seismology of the solar envelope: the base of the convective zone as seen in the phase shift of acoustic waves , 1994 .

[22]  H. M. Antia,et al.  Seismology of the solar convection zone , 1994 .

[23]  H. M. Antia,et al.  Measuring the helium abundance in the solar envelope: the role of the equation of state , 1994 .

[24]  S. Sofia,et al.  Modeling of shallow and inefficient convection in the outer layers of the Sun using realistic physics , 1994, astro-ph/9403046.

[25]  H. M. Antia,et al.  Helioseismic measurement of the extent of overshoot below the solar convection zone , 1994 .

[26]  J. Christensen-Dalsgaard,et al.  SEISMIC STUDY OF OVERSHOOT AT THE BASE OF THE SOLAR CONVECTIVE ENVELOPE , 1994 .

[27]  M. Seaton,et al.  Opacities for stellar envelopes , 1994 .

[28]  D. Guenther Nonadiabatic nonradial p-mode frequencies of the standard solar model, with and without helium diffusion , 1994 .

[29]  S. Kanbur,et al.  Comparative pulsation calculations with OP and OPAL opacities , 1994 .

[30]  J. Guzik,et al.  Using solar p-modes to determine the convection zone depth and constrain diffusion-produced composition gradients , 1993 .

[31]  A. Loeb,et al.  Element Diffusion in the Solar Interior , 1993, astro-ph/9304005.

[32]  J. Christensen-Dalsgaard,et al.  Effects of diffusion on solar models and their oscillation frequencies , 1993 .

[33]  J. Christensen-Dalsgaard,et al.  Sources of uncertainty in direct seismological measurements of the solar helium abundance , 1992 .

[34]  F. Rogers,et al.  Rosseland Mean Opacities for Variable Compositions , 1992 .

[35]  Forrest J. Rogers,et al.  Spin-Orbit Interaction Effects on the Rosseland Mean Opacity , 1992 .

[36]  J. Christensen-Dalsgaard,et al.  Solar oscillations and the equation of state , 1992 .

[37]  V. Baturin,et al.  Seismology of the solar envelope - Towards the calibration of the equation of state , 1992 .

[38]  N. Balmforth Solar pulsational stability – II. Pulsation frequencies , 1992 .

[39]  Neil J. Balmforth,et al.  Solar pulsational stability – I. Pulsation-mode thermodynamics , 1992 .

[40]  John N. Bahcall,et al.  Standard solar models, with and without helium diffusion and the solar neutrino problem , 1992 .

[41]  F. Rogers,et al.  Radiative atomic Rosseland mean opacity tables , 1992 .

[42]  M. Pinsonneault,et al.  Standard solar model , 1992 .

[43]  J. Buchler,et al.  Toward a Resolution of the Bump and Beat Cepheid Mass Discrepancies , 1992 .

[44]  J.-P. Zahn,et al.  Convective penetration in stellar interiors , 1991 .

[45]  C. Proffitt,et al.  Gravitational Settling in Solar Models , 1991 .

[46]  J. Christensen-Dalsgaard,et al.  The depth of the solar convection zone , 1991 .

[47]  W. Fowler,et al.  Our sun. II - Early mass loss of 0.1 solar mass and the case of the missing lithium , 1991 .

[48]  Forrest J. Rogers,et al.  Opacity tables for Cepheid variables , 1991 .

[49]  I. Mazzitelli,et al.  Stellar Turbulent Convection: A New Model and Applications , 1991 .

[50]  S. Baliunas,et al.  Evidence for long-term brightness changes of solar-type stars , 1990, Nature.

[51]  Bahcall,et al.  Solution of the solar-neutrino problem. , 1990, Physical review letters.

[52]  Robert F. Stein,et al.  Topology of Convection beneath the Solar Surface , 1989 .

[53]  J. Guzik,et al.  Oscillations of Solar Models with Internal Element Diffusion , 1989 .

[54]  S. Korzennik,et al.  Seismic analysis of the solar interior. I - Can opacity changes improve the theoretical frequencies? , 1989 .

[55]  M. Pinsonneault,et al.  Evolutionary models of the rotating sun , 1989 .

[56]  J. Christensen-Dalsgaard,et al.  Solar oscillation frequencies and the equation of state , 1988, Nature.

[57]  D. G. Hummer,et al.  The equation of state for stellar envelopes. III - Thermodynamic quantities , 1988 .

[58]  Dimitri Mihalas,et al.  The equation of state for stellar envelopes. I - An occupation probability formalism for the truncation of internal partition functions , 1988 .

[59]  Werner Däppen,et al.  The equation of state for stellar envelopes. II - Algorithm and selected results , 1988 .

[60]  Richard C. Willson,et al.  Solar luminosity variations in solar cycle 21 , 1988, Nature.

[61]  F. Rogers Occupation Numbers for Reacting Plasmas: The Role of the Planck-Larkin Partition Function , 1986 .

[62]  D. O. Gough,et al.  Speed of sound in the solar interior , 1985, Nature.

[63]  R. Rosner,et al.  The overshoot region at the bottom of the solar convection zone , 1984 .

[64]  N. Simon,et al.  A Plea For Reexamining Heavy Element Opacities In Stars , 1982 .

[65]  A. Endal,et al.  Rotation in solar-type stars. I. Evolutionary models for the spin-down of the sun , 1981 .

[66]  R. Stellingwerf Helium ionization driving in Beta Cephei stars. , 1978 .

[67]  J. E. Tabor,et al.  Radiative otacity tables for 40 stellar mixtures , 1976 .

[68]  J. O. Petersen Effects upon period ratios of Cepheid models from artificial changes in opacity and mean molecular weight , 1974 .

[69]  B. Flannery,et al.  Approximate equation of state for stellar material , 1973 .

[70]  H. Bethe Energy production in stars. , 1968, Science.

[71]  P. Demarque,et al.  A Series of Solar Models. , 1964 .

[72]  J. N. Stewart,et al.  Effects of Bound-Bound Absorption on Stellar Opacities. , 1962 .

[73]  F. Hoyle,et al.  A mathematical discussion of the problem of stellar evolution, with reference to the use of an automatic digital computer , 1956 .

[74]  H. Urey ABUNDANCES OF THE ELEMENTS , 1952 .

[75]  G. Gamow Nuclear Energy Sources and Stellar Evolution , 1938 .

[76]  T. G. Cowling The stability of gaseous stars (Second paper) , 1935 .

[77]  T. G. Cowling,et al.  The stability of gaseous stars , 1934 .

[78]  D. Guenther The Age of the Sun , 1932, Science.

[79]  Forrest J. Rogers,et al.  Opal equation-of-state tables for astrophysical applications , 1996 .

[80]  Juri Toomre,et al.  Seismic Observations of the Solar Interior , 1991 .

[81]  M. Gabriel Accuracy tests for the computation of solar models , 1991 .

[82]  V. Baturin,et al.  Seismological measurement of solar helium abundance , 1991, Nature.

[83]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[84]  J. Christensen-Dalsgaard,et al.  Radiative transfer and solar oscillations , 1983 .

[85]  R. Stobie,et al.  Quantitative results of stellar evolution and pulsation theories , 1971 .

[86]  J. N. Stewart,et al.  ROSSELAND OPACITY TABLES FOR POPULATION I COMPOSITIONS. , 1970 .

[87]  J. N. Stewart,et al.  RADIATIVE AND CONDUCTIVE OPACITIES FOR ELEVEN ASTROPHYSICAL MIXTURES , 1965 .

[88]  M. Schwarzschild,et al.  Inhomogeneous Stellar Models. V. a. Solar Model with Convective Envelope and Inhomogeneous Interior. , 1957 .