A Study of Ordered Ag-Groupoids in terms of Semilattices via Smallest (Fuzzy) Ideals

An ordered AG-groupoid can be referred to as an ordered left almost semigroup, as the main difference between an ordered semigroup and an ordered AG-groupoid is the switching of an associative law. In this paper, we define the smallest one-sided ideals in an ordered AG-groupoid and use them to characterize a strongly regular class of a unitary ordered AG-groupoid along with its semilattices and fuzzy one-sided ideals. We also introduce the concept of an ordered -groupoid and investigate its structural properties by using the generated ideals and fuzzy one-sided ideals. These concepts will verify the existing characterizations and will help in achieving more generalized results in future works.