Computational evaluation of multi-iterative approaches for solving graph-structured large linear systems

We analyse the practical efficiency of multi-iterative techniques for the numerical solution of graph-structured large linear systems. In particular we evaluate the effectiveness of several combinations of coarser-grid operators which preserve the graph structure of the projected matrix at the inner levels and smoothers. We also discuss and evaluate some possible strategies (inverse projection and dense projection) to connect coarser-grid operators and graph-based preconditioners. Our results show that an appropriate choice of adaptive projectors and tree-based preconditioned conjugate gradient methods result in highly effective and robust approaches, that are capable to efficiently solve large-scale, difficult systems, for which the known iterative solvers alone can be rather slow.

[1]  L. Portugal,et al.  A truncated primal‐infeasible dual‐feasible network interior point method , 2000 .

[2]  Bruce Hendrickson,et al.  Support Theory for Preconditioning , 2003, SIAM J. Matrix Anal. Appl..

[3]  B. Mohar Some applications of Laplace eigenvalues of graphs , 1997 .

[4]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[5]  Gianna M. Del Corso,et al.  Fast PageRank Computation via a Sparse Linear System , 2005, Internet Math..

[6]  Anne Greenbaum,et al.  Analysis of a Multigrid Method as an Iterative Technique for Solving Linear Systems , 1984 .

[7]  G. Sabidussi,et al.  Graph symmetry : algebraic methods and applications , 1997 .

[8]  Stefano Serra Capizzano,et al.  A General Setting for the Parametric Google Matrix , 2006, Internet Math..

[9]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[10]  Thomas A. Manteuffel,et al.  Smoothed Aggregation Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..

[11]  Amy Nicole Langville,et al.  A Survey of Eigenvector Methods for Web Information Retrieval , 2005, SIAM Rev..

[12]  Pietro Dell'Acqua Algorithmic variations on the theme of structured matrices, with applications to graphs and imaging. , 2013 .

[13]  Stefano Serra Capizzano,et al.  Analysis of Multigrid Preconditioning for Implicit PDE Solvers for Degenerate Parabolic Equations , 2011, SIAM J. Matrix Anal. Appl..

[14]  A. Cayley A theorem on trees , 2009 .

[15]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[16]  M. Donatelli A note on grid transfer operators for multigrid methods , 2008, 0807.2565.

[17]  Edward B. Saff,et al.  On Clenshaws's method and a generalisation to faber series , 1987 .

[18]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[19]  Claudio Gentile,et al.  New Preconditioners for KKT Systems of Network Flow Problems , 2003, SIAM J. Optim..

[20]  Michael K. Ng,et al.  Multigrid preconditioners for symmetric Sinc systems , 2004 .

[21]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[22]  Hanif D. Sherali,et al.  Linear programming and network flows (2nd ed.) , 1990 .

[23]  Claudio Gentile,et al.  Prim-Based BCT Preconditioners for Min-Cost Flow Problems , 2005 .

[24]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[25]  Yvan Notay,et al.  Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..

[26]  K. Stüben A review of algebraic multigrid , 2001 .

[27]  Michael Doob,et al.  Spectra of graphs , 1980 .

[28]  Stefano Serra Capizzano,et al.  Spectral Analysis of (Sequences of) Graph Matrices , 2001, SIAM J. Matrix Anal. Appl..

[29]  R. Bhatia Matrix Analysis , 1996 .

[30]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[31]  D. Noutsos,et al.  The conditioning of FD matrix sequences coming from semi-elliptic differential equations , 2008 .

[32]  Takashi Tsuchiya,et al.  Uniform Boundedness of a Preconditioned Normal Matrix Used in Interior-Point Methods , 2004, SIAM J. Optim..

[33]  G. Kirchhoff On the Solution of the Equations Obtained from the Investigation of the Linear Distribution of Galvanic Currents , 1958 .

[34]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[35]  Claudio Gentile,et al.  Prim-based support-graph preconditioners for min-cost flow problems , 2007, Comput. Optim. Appl..

[36]  S. Serra,et al.  Multi-iterative methods , 1993 .

[37]  Thomas A. Manteuffel,et al.  Multilevel Adaptive Aggregation for Markov Chains, with Application to Web Ranking , 2008, SIAM J. Sci. Comput..

[38]  Sivan Toledo,et al.  Maximum‐weight‐basis preconditioners , 2004, Numer. Linear Algebra Appl..

[39]  Stefano Serra-Capizzano,et al.  Multigrid Methods for Multilevel Circulant Matrices , 2005 .

[40]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[41]  H. Keller Numerical Methods for Two-Point Boundary-Value Problems , 1993 .

[42]  Stefano Serra Capizzano,et al.  Google PageRanking problem: The model and the analysis , 2007, J. Comput. Appl. Math..

[43]  Angelika Steger,et al.  Fast Algorithms for Weighted Bipartite Matching , 2005, WEA.

[44]  Gene H. Golub,et al.  Matrix computations , 1983 .

[45]  Jordi Castro,et al.  A Specialized Interior-Point Algorithm for Multicommodity Network Flows , 1999, SIAM J. Optim..

[46]  Claudio Gentile,et al.  Experiments with a hybrid interior point/combinatorial approach for network flow problems , 2007, Optim. Methods Softw..