Synchronization and anti-synchronization of new uncertain hyperchaotic systems via novel active pinning control

This paper discusses the synchronization and anti-synchronization of new uncertain hyperchaotic systems. Based on the idea of active control, a novel active pinning control strategy is presented, which only needs a state of uncertain new hyperchaotic systems. The proposed controller can achieve synchronization and anti-synchronization between a response system and a drive system, and ensure the synchronized robust stability of uncertain new hyperchaotic systems. Numerical simulations of new hyperchaotic systems show that the controller can make chaotic systems achieve synchronization or anti-synchronization in a quite short period and both are of good robust stability.

[1]  Jianliang Tang,et al.  Controlling Chen’s chaotic attractor using two different techniques based on parameter identification ☆ , 2007 .

[2]  吕金虎,et al.  Controlling the Chen attractor using linear feedback based on parameter identification , 2005 .

[3]  Wolfgang A. Halang,et al.  Homoclinic and heteroclinic orbits in a modified Lorenz system , 2004, Inf. Sci..

[4]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[5]  Lu Jinhu,et al.  Controlling the Chen attractor using linear feedback based on parameter identification , 2002 .

[6]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[7]  Shihua Chen,et al.  Impulsive control and synchronization of unified chaotic system , 2004 .

[8]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[9]  Zhi-Hong Guan,et al.  Adaptive synchronization for Chen chaotic system with fully unknown parameters , 2004 .

[10]  Wuneng Zhou,et al.  On dynamics analysis of a new chaotic attractor , 2008 .

[11]  Guohui Li,et al.  Generalized projective synchronization of two chaotic systems by using active control , 2006 .

[12]  Jiye Zhang,et al.  Synchronizing chaotic systems using backstepping design , 2003 .

[13]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[14]  Zhengzhi Han,et al.  Controlling and synchronizing chaotic Genesio system via nonlinear feedback control , 2003 .

[15]  Xiaofeng Liao,et al.  Impulsive synchronization of chaotic systems. , 2005, Chaos.

[16]  Celso Grebogi,et al.  Erratum: ``Controlling chaos'' [Phys. Rev. Lett. 64, 1196 (1990)] , 1990 .

[17]  Shihua Chen,et al.  Synchronizing strict-feedback and general strict-feedback chaotic systems via a single controller , 2004 .

[18]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[19]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[20]  Guo-Hui Li,et al.  Generalized projective synchronization between two different chaotic systems using active backstepping control , 2006 .