Global phenological insensitivity to shifting ocean temperatures among seabirds

Reproductive timing in many taxa plays a key role in determining breeding productivity1, and is often sensitive to climatic conditions2. Current climate change may alter the timing of breeding at different rates across trophic levels, potentially resulting in temporal mismatch between the resource requirements of predators and their prey3. This is of particular concern for higher-trophic-level organisms, whose longer generation times confer a lower rate of evolutionary rescue than primary producers or consumers4. However, the disconnection between studies of ecological change in marine systems makes it difficult to detect general changes in the timing of reproduction5. Here, we use a comprehensive meta-analysis of 209 phenological time series from 145 breeding populations to show that, on average, seabird populations worldwide have not adjusted their breeding seasons over time (−0.020 days yr−1) or in response to sea surface temperature (SST) (−0.272 days °C−1) between 1952 and 2015. However, marked between-year variation in timing observed in resident species and some Pelecaniformes and Suliformes (cormorants, gannets and boobies) may imply that timing, in some cases, is affected by unmeasured environmental conditions. This limited temperature-mediated plasticity of reproductive timing in seabirds potentially makes these top predators highly vulnerable to future mismatch with lower-trophic-level resources2.Time of reproduction may be altered as the climate changes. For seabirds, it is shown that there has not been an adjustment in timing as the climate changes and the sea surface warms. This lack of plasticity could result in a mismatch with food resources.

Hugh Drummond | Michael J. Dunn | Jaime A. Ramos | Flavio Quintana | Peter R. Wilson | Tycho Anker-Nilssen | Francis Daunt | Daniel Oro | Louise Emmerson | David Grémillet | Olof Olsson | Sarah Wanless | Henri Weimerskirch | Claus Bech | Russell W. Bradley | Maud Poisbleau | Alexander L. Bond | David Monticelli | Colin Southwell | Andre Chiaradia | José Manuel Igual | Ana Sanz-Aguilar | Meritxell Genovart | Grant Ballard | David G. Ainley | William A. Montevecchi | Olivier Gilg | Sébastien Descamps | Sandra Bouwhuis | Kjell Einar Erikstad | Niels M. Schmidt | Mark Mallory | Richard A. Phillips | Paulo Catry | W. Montevecchi | A. Chiaradia | A. Phillimore | H. Weimerskirch | K. Camphuysen | J. Ramos | S. Lorentsen | T. Anker‐Nilssen | K. Erikstad | J. Granadeiro | P. Warzybok | J. Jahncke | R. Barrett | S. Wanless | M. Harris | Y. Watanuki | R. Phillips | N. Schmidt | A. G. Wood | A. Bond | W. Trivelpiece | C. Walling | M. Genovart | D. Oro | D. Grémillet | P. Ryan | F. Daunt | S. Lewis | A. Lescroël | O. Olsson | W. Fraser | C. Surman | P. Wilson | C. Rodríguez | H. Drummond | S. Christensen-Dalsgaard | R. Cuthbert | O. Gilg | J. Fort | L. Bollache | C. Southwell | M. Newell | M. Mallory | A. Hedd | A. Sanz‐Aguilar | K. Dugger | G. Ballard | D. Ainley | L. Emmerson | I. Nisbet | B. Moe | C. Bech | S. Hanssen | P. Catry | S. Descamps | F. Quintana | J. González‐Solís | P. Becker | N. Dehnhard | M. Poisbleau | P. Lyver | I. Jones | S. Bouwhuis | J. Hinke | Yutaka Watanuki | R. Bradley | K. Barton | Albert B. Phillimore | William Fraser | April Hedd | J. Igual | R. Ramos | Jannik Hansen | J. Lang | B. Sittler | Katie M. Dugger | Svein-Håkon Lorentsen | Raül Ramos | D. Monticelli | P. Agnew | Jaime Jahncke | Richard Cuthbert | Kerry J. Barton | Amélie Lescroël | Mark Newell | Mike Harris | Katharine Keogan | Craig A. Walling | Philippa Agnew | Robert T. Barrett | Peter Becker | Per-Arvid Berglund | Loïc Bollache | Zofia M. Burr | Kees Camphuysen | Signe Christensen-Dalsgaard | Nina Dehnhard | Tony Diamond | George Divoky | Jérôme Fort | Jacob González-Solís | José Pedro Granadeiro | Jannik Hansen | Sveinn A. Hanssen | Jefferson Hinke | Ian Jones | Peter J. Kappes | Johannes Lang | Magdalene Langset | Phil O’B. Lyver | Børge Moe | Carolyn Mostello | Lisa Nicholson | Ian Nisbet | Vivian Pattison | Tanya Pyk | Tone Kirstin Reiertsen | Cristina Rodríguez | Peter Ryan | Paula Shannon | Benoit Sittler | Christopher Surman | Walter S. Svagelj | Wayne Trivelpiece | Pete Warzybok | Andrew G. Wood | Sue Lewis | Vivian Pattison | G. Divoky | M. Dunn | W. Svagelj | T. Reiertsen | Katharine Keogan | M. Langset | Tony Diamond | C. Mostello | L. Nicholson | T. Pyk | Z. Burr | Amélie Lescroël | Paula Shannon | Per‐Arvid Berglund | J. P. Granadeiro | Maud Poisbleau | Raül Ramos | S. Christensen‐Dalsgaard

[1]  S. Lorentsen,et al.  Later at higher latitudes: large- scale variability in seabird breeding timing and synchronicity , 2016 .

[2]  Marcel E Visser,et al.  Shifts in phenology due to global climate change: the need for a yardstick , 2005, Proceedings of the Royal Society B: Biological Sciences.

[3]  A. Mysterud,et al.  Review article. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  C. Barbraud,et al.  Seasonality in marine ecosystems: Peruvian seabirds, anchovy, and oceanographic conditions. , 2016, Ecology.

[5]  Res Altwegg,et al.  Phenological Changes in the Southern Hemisphere , 2013, PloS one.

[6]  W. Bradshaw,et al.  Light, time, and the physiology of biotic response to rapid climate change in animals. , 2010, Annual review of physiology.

[7]  Joanna Burger,et al.  Biology of marine birds , 2001 .

[8]  Geir Ottersen,et al.  Climate and the match or mismatch between predator requirements and resource availability , 2007 .

[9]  E. Woehler,et al.  Climate as a driver of phenological change in southern seabirds , 2014, International Journal of Biometeorology.

[10]  T. Clutton‐Brock,et al.  Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments , 2010 .

[11]  D. Pauly,et al.  Signature of ocean warming in global fisheries catch , 2013, Nature.

[12]  I. Burke,et al.  Seed bank and big sagebrush plant community composition in a range margin for big sagebrush , 2016 .

[13]  W. R. Fraser,et al.  Appendix S 3 : Time Series Reanalyses Circumpolar analysis of the Adélie penguin reveals the importance of environmental variability in phenological mismatch , 2017 .

[14]  Sonia Romero‐Romero,et al.  Body size-based trophic structure of a deep marine ecosystem. , 2016, Ecology.

[15]  J. Durant,et al.  Differential responses of three sympatric seabirds to spatio-temporal variability in shared resources , 2012 .

[16]  M. Pagel,et al.  Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation , 2002 .

[17]  E. Gwinner,et al.  Circannual clocks in avian reproduction and migration , 2008 .

[18]  D. Bryant,et al.  Avian phenology: Climate change and constraints on breeding , 2000, Nature.

[19]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[20]  D. Elston,et al.  Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web , 2012 .

[21]  S. Wanless,et al.  From days to decades: short- and long-term variation in environmental conditions affect offspring diet composition of a marine top predator , 2017 .

[22]  M. Lynch,et al.  The Phylogenetic Mixed Model , 2004, The American Naturalist.

[23]  F. Jiguet,et al.  Which are the phenologically flexible species? A case study with common passerine birds , 2011 .

[24]  Alison J. Stattersfield,et al.  Seabird conservation status, threats and priority actions: a global assessment , 2012, Bird Conservation International.

[25]  R. Furness,et al.  Seabird-fishery interactions : quantifying the sensitivity of seabirds to reductions in sandeel abundance, and identification of key areas for sensitive seabirds in the North Sea , 2000 .

[26]  S. Wanless,et al.  Longitudinal bio-logging reveals interplay between extrinsic and intrinsic carry-over effects in a long-lived vertebrate. , 2014, Ecology.

[27]  S. Wanless,et al.  Later breeding in northern gannets in the eastern Atlantic , 2008 .

[28]  A. Longhurst TOWARD AN ECOLOGICAL GEOGRAPHY OF THE SEA , 2007 .

[29]  Toke Thomas Høye,et al.  The effects of phenological mismatches on demography , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  Carrie V. Kappel,et al.  Global imprint of climate change on marine life , 2013 .

[31]  T. Anker‐Nilssen,et al.  There is more to climate than the North Atlantic Oscillation: a new perspective from climate dynamics to explain the variability in population growth rates of a long-lived seabird , 2015, Front. Ecol. Evol..

[32]  A. Richardson,et al.  Under-Resourced, Under Threat , 2008, Science.

[33]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[34]  Francisco P. Chavez,et al.  A comparison of Eastern Boundary Upwelling Ecosystems , 2009 .

[35]  J. L. Gittleman,et al.  Predicting extinction risk in declining species , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  Kerrie Mengersen,et al.  Meta‐analysis of variation: ecological and evolutionary applications and beyond , 2015 .

[37]  W. Sydeman,et al.  Climate change and marine vertebrates , 2015, Science.

[38]  W. Sydeman,et al.  Seabirds and climate change: roadmap for the future , 2012 .

[39]  O. Hoegh‐Guldberg,et al.  Ecological responses to recent climate change , 2002, Nature.

[40]  B. H. Pugesek Seabirds of the Farallon Islands: Ecology, Dynamics, and Structure of an Upwelling-System Community. David G. Ainley , Robert J. Boekelheide , 1991 .

[41]  Bernt-Erik Sæther,et al.  Population Growth in a Wild Bird Is Buffered Against Phenological Mismatch , 2013, Science.

[42]  J. Hadfield,et al.  General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters , 2010, Journal of evolutionary biology.

[43]  A. Dawson Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  Nina McLean,et al.  Predicting when climate-driven phenotypic change affects population dynamics. , 2016, Ecology letters.

[45]  Paul M. Thompson,et al.  Phenological sensitivity to climate across taxa and trophic levels , 2016, Nature.

[46]  W. A. Cox,et al.  A Phylogenomic Study of Birds Reveals Their Evolutionary History , 2008, Science.

[47]  Jarrod Had MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package , 2010 .

[48]  C. Both,et al.  Global Climate Change Leads to Mistimed Avian Reproduction , 2004 .

[49]  A. Koschinsky,et al.  Fe- and Cu-Complex Formation with Artificial Ligands Investigated by Ultra-High Resolution Fourier-Transform ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS): Implications for Natural Metal-Organic Complex Studies , 2016, Front. Mar. Sci..

[50]  Shinichi Nakagawa,et al.  Methodological issues and advances in biological meta-analysis , 2012, Evolutionary Ecology.

[51]  A. Møller,et al.  Changes in breeding phenology and population size of birds. , 2014, The Journal of animal ecology.

[52]  W. Jetz,et al.  The global diversity of birds in space and time , 2012, Nature.

[53]  Alistair J. Wilson,et al.  Timing is everything: flexible phenology and shifting selection in a colonial seabird. , 2009, The Journal of animal ecology.

[54]  Andrew S. Brierley,et al.  Impacts of Climate Change on Marine Organisms and Ecosystems , 2009, Current Biology.